Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 6—June 2010
Dispatch

Novel Norovirus in Dogs with Diarrhea

João Rodrigo Mesquita, Leslie Barclay, Maria São José Nascimento, and Jan VinjéComments to Author 
Author affiliations: University of Porto, Porto, Portugal (J.R. Mesquita, M.S.J. Nascimento); Polytechnic Institute of Viseu, Viseu, Portugal (J. R. Mesquita); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (L. Barclay, J. Vinjé)

Main Article

Figure

Phylogenetic trees of A) a 206-nt region of the RNA-dependent polymerase gene of 1 human genogroup (G) IV strain (Hu/GIV.1/FortLauderdale/1998/US), 2 recently published canine noroviruses (GIV.2/170/2004/IT, Bari/91/2007/IT) (5,13), and the novel canine Viseu strain reported in the study (boldface); and B) full-length amino acid sequence of viral protein (VP) 1 of norovirus strains of GI–GV detected in animals and human strains Hu/GI.1/Norwalk/1968/US, Hu/GI.3/DesertShield/1993/US, and Hu/GII.4/

Figure. Phylogenetic trees of A) a 206-nt region of the RNA-dependent polymerase gene of 1 human genogroup (G) IV strain (Hu/GIV.1/FortLauderdale/1998/US), 2 recently published canine noroviruses (GIV.2/170/2004/IT, Bari/91/2007/IT) (5,13), and the novel canine Viseu strain reported in the study (boldface); and B) full-length amino acid sequence of viral protein (VP) 1 of norovirus strains of GI–GV detected in animals and human strains Hu/GI.1/Norwalk/1968/US, Hu/GI.3/DesertShield/1993/US, and Hu/GII.4/Bristol/1993/UK. The Viseu strain (boldface) forms tentatively a novel genogroup (GVI) with strains Ca/Bari/91/2007/IT and Hu/Chiba/2004/JP. Phylogenetic analysis was performed by using TreeCon software with Jukes and Cantor correction with bootstrap analysis (n = 1,000), and the tree topology was inferred by using neighbor-joining. Ca, canine; Hu, human; Po, porcine; Bo, bovine; Ov, ovine; Mu, murine.

Main Article

References
  1. Glass  RI, Parashar  UD, Estes  MK. Norovirus gastroenteritis. N Engl J Med. 2009;361:177685. DOIPubMedGoogle Scholar
  2. Patel  MM, Hall  AJ, Vinjé  J, Parashar  UD. Noroviruses: a comprehensive review. J Clin Virol. 2009;44:18. DOIPubMedGoogle Scholar
  3. van der Poel  WH, Vinjé  J, van der Heide  R, Herrera  MI, Vivo  A, Koopmans  MP. Norwalk-like calicivirus genes in farm animals. Emerg Infect Dis. 2000;6:3641.PubMedGoogle Scholar
  4. Mattison  K, Shukla  A, Cook  A, Pollari  F, Friendship  R, Kelton  D, Human noroviruses in swine and cattle. Emerg Infect Dis. 2007;13:11848.PubMedGoogle Scholar
  5. Martella  V, Lorusso  E, Decaro  N, Elia  G, Radogna  A, D’Abramo  M, Detection and molecular characterization of a canine norovirus. Emerg Infect Dis. 2008;14:13068. DOIPubMedGoogle Scholar
  6. Farkas  T, Sestak  K, Wei  C, Jiang  X. Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J Virol. 2008;82:540816. DOIPubMedGoogle Scholar
  7. Martella  V, Campolo  M, Lorusso  E, Cavicchio  P, Camero  M, Bellacicco  A, Norovirus in captive lion cub (Panthera leo). Emerg Infect Dis. 2007;13:10713.PubMedGoogle Scholar
  8. Jiang  X, Huang  PW, Zhong  WM, Farkas  T, Cubitt  DW, Matson  DO. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. J Virol Methods. 1999;83:14554. DOIPubMedGoogle Scholar
  9. Vennema  H, Bruin  E, Koopmans  M. Rational optimization of generic primers used for Norwalk-like virus detection by reverse transcriptase polymerase chain reaction. J Clin Virol. 2002;25:2335. DOIPubMedGoogle Scholar
  10. Vinjé  J, Koopmans  MPG. Simultaneous detection and genotyping of “Norwalk-like viruses” by oligonucleotide array in a reverse line blot hybridization format. J Clin Microbiol. 2000;38:2595601.PubMedGoogle Scholar
  11. Pratelli  A, Tempesta  M, Greco  G, Martella  V, Buonavoglia  C. Development of a nested PCR assay for the detection of canine coronavirus. J Virol Methods. 1999;80:115. DOIPubMedGoogle Scholar
  12. Pereira  CA, Monezi  TA, Mehnert  DU, D’Angelo  M, Durigon  EL. Molecular characterization of canine parvovirus in Brazil by polymerase chain reaction assay. Vet Microbiol. 2000;75:12733. DOIPubMedGoogle Scholar
  13. Martella  V, Decaro  N, Lorusso  E, Radogna  A, Moschidou  P, Amorisco  F. Genetic heterogeneity and recombination in canine noroviruses. J Virol. 2009;83:113916. DOIPubMedGoogle Scholar
  14. Widdowson  MA, Rockx  B, Schepp  R, van der Poel  WH, Vinje  J, van Duynhoven  YT, Detection of serum antibodies to bovine norovirus in veterinarians and the general population in the Netherlands. J Med Virol. 2005;76:11928. DOIPubMedGoogle Scholar
  15. Grøndalen  J, Sævik  B, Sørum  H. Companion animals as reservoir for zoonotic diseases. European Journal of Companion Animal Practice. 2008;18:21322.

Main Article

Page created: February 10, 2011
Page updated: February 10, 2011
Page reviewed: February 10, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external