Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Issue Cover for Volume 16, Number 6—June 2010

Volume 16, Number 6—June 2010

[PDF - 4.05 MB - 151 pages]

Research

Evolution of Northeastern and Midwestern Borrelia burgdorferi, United States [PDF - 299 KB - 7 pages]
D. Brisson et al.

The per capita incidence of human Lyme disease in the northeastern United States is more than twice that in the Midwest. However, the prevalence of Borrelia burgdorferi, the bacterium that causes Lyme disease, in the tick vector is nearly identical in the 2 regions. The disparity in human Lyme disease incidence may result from a disparity in the human invasiveness of the bacteria in the Northeast and Midwest caused by fundamentally different evolutionary histories. B. burgdorferi populations in the Northeast and Midwest are geographically isolated, enabling evolutionary divergence in human invasiveness. However, we found that B. burgdorferi populations in the Northeast and Midwest shared a recent common ancestor, which suggests that substantial evolutionary divergence in human invasiveness has not occurred. We propose that differences in either animal ecology or human behavior are the root cause of the differences in human incidence between the 2 regions.

EID Brisson D, Vandermause MF, Meece JK, Reed KD, Dykhuizen DE. Evolution of Northeastern and Midwestern Borrelia burgdorferi, United States. Emerg Infect Dis. 2010;16(6):911-917. https://doi.org/10.3201/eid1606.090329
AMA Brisson D, Vandermause MF, Meece JK, et al. Evolution of Northeastern and Midwestern Borrelia burgdorferi, United States. Emerging Infectious Diseases. 2010;16(6):911-917. doi:10.3201/eid1606.090329.
APA Brisson, D., Vandermause, M. F., Meece, J. K., Reed, K. D., & Dykhuizen, D. E. (2010). Evolution of Northeastern and Midwestern Borrelia burgdorferi, United States. Emerging Infectious Diseases, 16(6), 911-917. https://doi.org/10.3201/eid1606.090329.

Oseltamivir-Resistant Influenza Viruses A (H1N1) during 2007–2009 Influenza Seasons, Japan [PDF - 684 KB - 10 pages]
M. Ujike et al.

To monitor oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y in neuraminidase (NA) in Japan during 2 influenza seasons, we analyzed 3,216 clinical samples by NA sequencing and/or NA inhibition assay. The total frequency of ORVs was 2.6% (45/1,734) during the 2007–08 season and 99.7% (1,477/1,482) during the 2008–09 season, indicating a marked increase in ORVs in Japan during 1 influenza season. The NA gene of ORVs in the 2007–08 season fell into 2 distinct lineages by D354G substitution, whereas that of ORVs in the 2008–09 season fell into 1 lineage. NA inhibition assay and M2 sequencing showed that almost all the ORVs were sensitive to zanamivir and amantadine. The hemagglutination inhibition test showed that ORVs were antigenetically similar to the 2008–09 vaccine strain A/Brisbane/59/2007. Our data indicate that the current vaccine or zanamivir and amantadine are effective against recent ORVs, but continuous surveillance remains necessary.

EID Ujike M, Shimabukuro K, Mochizuki K, Obuchi M, Kageyama T, Shirakura M, et al. Oseltamivir-Resistant Influenza Viruses A (H1N1) during 2007–2009 Influenza Seasons, Japan. Emerg Infect Dis. 2010;16(6):926-935. https://doi.org/10.3201/eid1606.091623
AMA Ujike M, Shimabukuro K, Mochizuki K, et al. Oseltamivir-Resistant Influenza Viruses A (H1N1) during 2007–2009 Influenza Seasons, Japan. Emerging Infectious Diseases. 2010;16(6):926-935. doi:10.3201/eid1606.091623.
APA Ujike, M., Shimabukuro, K., Mochizuki, K., Obuchi, M., Kageyama, T., Shirakura, M....Odagiri, T. (2010). Oseltamivir-Resistant Influenza Viruses A (H1N1) during 2007–2009 Influenza Seasons, Japan. Emerging Infectious Diseases, 16(6), 926-935. https://doi.org/10.3201/eid1606.091623.

Increased Prevalence of Trichinella spp., Northeastern Germany, 2008 [PDF - 213 KB - 7 pages]
G. Pannwitz et al.

In 2008, a Trichinella spp. outbreak occurred on a small family-owned pig farm in Mecklenburg–Western Pomerania in northeastern Germany. To obtain epidemiologic information on this outbreak, we determined that after 2005 the prevalence of Trichinella spp. in wild boars has increased in this region of Germany. We discuss the potential role of the raccoon dog in the increase in Trichinella spp. prevalence in the sylvatic cycle in this region. We believe that this increase could pose a threat to pigs kept in back yard conditions, and we provide recommendations to ensure public health safety.

EID Pannwitz G, Mayer-Scholl A, Balicka-Ramisz A, Nöckler K. Increased Prevalence of Trichinella spp., Northeastern Germany, 2008. Emerg Infect Dis. 2010;16(6):936-942. https://doi.org/10.3201/eid1606.091629
AMA Pannwitz G, Mayer-Scholl A, Balicka-Ramisz A, et al. Increased Prevalence of Trichinella spp., Northeastern Germany, 2008. Emerging Infectious Diseases. 2010;16(6):936-942. doi:10.3201/eid1606.091629.
APA Pannwitz, G., Mayer-Scholl, A., Balicka-Ramisz, A., & Nöckler, K. (2010). Increased Prevalence of Trichinella spp., Northeastern Germany, 2008. Emerging Infectious Diseases, 16(6), 936-942. https://doi.org/10.3201/eid1606.091629.

New Measles Virus Genotype Associated with Outbreak, China [PDF - 145 KB - 5 pages]
L. Wang et al.

To determine the origin of the virus associated with a measles outbreak in Menglian County, Yunnan Province, People’s Republic of China, in 2009, we conducted genetic analyses. Phylogenetic analyses based on nucleoprotein (N) and hemagglutinin (H) gene sequences showed that these Menglian viruses were not closely related to sequences of any World Health Organization (WHO) reference strains representing the 23 currently recognized genotypes. The minimum nucleotide divergence between the Menglian viruses and the most closely related reference strain, genotype D7, was 3.3% for the N gene and 3.0% for the H gene. A search of the databases of GenBank, WHO, and the Health Protection Agency Measles Nucleotide Surveillance showed that the Menglian viruses, together with the 2 older non-Menglian viruses, could be members of a new proposed measles genotype, d11. The new genotype designation will allow for better description of measles transmission patterns, especially in the Southeast Asian and Western Pacific regions.

EID Wang L, Ding Z, Wang H, Li L, Pang Y, Brown KE, et al. New Measles Virus Genotype Associated with Outbreak, China. Emerg Infect Dis. 2010;16(6):943-947. https://doi.org/10.3201/eid1606.100089
AMA Wang L, Ding Z, Wang H, et al. New Measles Virus Genotype Associated with Outbreak, China. Emerging Infectious Diseases. 2010;16(6):943-947. doi:10.3201/eid1606.100089.
APA Wang, L., Ding, Z., Wang, H., Li, L., Pang, Y., Brown, K. E....Deng, Y. (2010). New Measles Virus Genotype Associated with Outbreak, China. Emerging Infectious Diseases, 16(6), 943-947. https://doi.org/10.3201/eid1606.100089.

Clonal Expansion of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis, Japan [PDF - 154 KB - 7 pages]
Y. Murase et al.

The emergence and spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) has raised public health concern about global control of TB. To estimate the transmission dynamics of MDR and XDR TB, we conducted a DNA fingerprinting analysis of 55 MDR/XDR Mycobacterium tuberculosis strains isolated from TB patients throughout Japan in 2002. Twenty-one (38%) of the strains were classified into 9 clusters with geographic links, which suggests that community transmission of MDR/XDR TB is ongoing. Furthermore, the XDR M. tuberculosis strains were more likely than the non–XDR MDR strains to be clustered (71% vs. 24%; p = 0.003), suggesting that transmission plays a critical role in the new incidence of XDR TB. These findings highlight the difficulty of preventing community transmission of XDR TB by conventional TB control programs and indicate an urgent need for a more appropriate strategy to contain highly developed drug-resistant TB.

EID Murase Y, Maeda S, Yamada H, Ohkado A, Chikamatsu K, Mizuno K, et al. Clonal Expansion of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis, Japan. Emerg Infect Dis. 2010;16(6):948-954. https://doi.org/10.3201/eid1606.091844
AMA Murase Y, Maeda S, Yamada H, et al. Clonal Expansion of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis, Japan. Emerging Infectious Diseases. 2010;16(6):948-954. doi:10.3201/eid1606.091844.
APA Murase, Y., Maeda, S., Yamada, H., Ohkado, A., Chikamatsu, K., Mizuno, K....Mitarai, S. (2010). Clonal Expansion of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis, Japan. Emerging Infectious Diseases, 16(6), 948-954. https://doi.org/10.3201/eid1606.091844.

Increase in Pilus Islet 2–encoded Pili among Streptococcus pneumoniae Isolates, Atlanta, Georgia, USA [PDF - 258 KB - 8 pages]
D. Zähner et al.

To define the prevalence of pilus islet 2 (PI-2)–encoded pili in Streptococcus pneumoniae in a geographically defined area, we examined 590 S. pneumoniae isolates from population-based surveillance of invasive pneumococcal disease in Atlanta, Georgia, USA, 1994–2006. In 2006, PI-2 was present in 21% of all invasive isolates, including serotypes 1 (100%), 7F (89%), 11A (21%), 19A (40%), and 19F (75%). Only serotype 19F is included in the 7-valent pneumococcal conjugate vaccine that is in use worldwide. In 1999, PI-2-containing isolates were of the same serotypes but accounted for only 3.6% of all invasive isolates. The increase of PI-2 in 2006 resulted predominantly from the emergence of serotype 19A isolates of sequence type 320 and the expansion of serotype 7F isolates. The increase in PI-2-containing isolates and the finding that isolates of all identified serotypes expressed highly conserved PI-2 pili supports their potential as a vaccine candidate.

EID Zähner D, Gudlavalleti A, Stephens DS. Increase in Pilus Islet 2–encoded Pili among Streptococcus pneumoniae Isolates, Atlanta, Georgia, USA. Emerg Infect Dis. 2010;16(6):955-962. https://doi.org/10.3201/eid1606.091820
AMA Zähner D, Gudlavalleti A, Stephens DS. Increase in Pilus Islet 2–encoded Pili among Streptococcus pneumoniae Isolates, Atlanta, Georgia, USA. Emerging Infectious Diseases. 2010;16(6):955-962. doi:10.3201/eid1606.091820.
APA Zähner, D., Gudlavalleti, A., & Stephens, D. S. (2010). Increase in Pilus Islet 2–encoded Pili among Streptococcus pneumoniae Isolates, Atlanta, Georgia, USA. Emerging Infectious Diseases, 16(6), 955-962. https://doi.org/10.3201/eid1606.091820.

Rift Valley Fever during Rainy Seasons, Madagascar, 2008 and 2009 [PDF - 328 KB - 8 pages]
S. F. Andriamandimby et al.

During 2 successive rainy seasons, January 2008 through May 2008 and November 2008 through March 2009, Rift Valley fever virus (RVFV) caused outbreaks in Madagascar. Human and animal infections were confirmed on the northern and southern coasts and in the central highlands. Analysis of partial sequences from RVFV strains showed that all were similar to the strains circulating in Kenya during 2006–2007. A national cross-sectional serologic survey among slaughterhouse workers at high risk showed that RVFV circulation during the 2008 outbreaks included all of the Malagasy regions and that the virus has circulated in at least 92 of Madagascar’s 111 districts. To better predict and respond to RVF outbreaks in Madagascar, further epidemiologic studies are needed, such as RVFV complete genome analysis, ruminant movement mapping, and surveillance implementation.

EID Andriamandimby SF, Randrianarivo-Solofoniaina AE, Jeanmaire EM, Ravololomanana L, Razafimanantsoa LT, Rakotojoelinandrasana T, et al. Rift Valley Fever during Rainy Seasons, Madagascar, 2008 and 2009. Emerg Infect Dis. 2010;16(6):963-970. https://doi.org/10.3201/eid1606.091266
AMA Andriamandimby SF, Randrianarivo-Solofoniaina AE, Jeanmaire EM, et al. Rift Valley Fever during Rainy Seasons, Madagascar, 2008 and 2009. Emerging Infectious Diseases. 2010;16(6):963-970. doi:10.3201/eid1606.091266.
APA Andriamandimby, S. F., Randrianarivo-Solofoniaina, A. E., Jeanmaire, E. M., Ravololomanana, L., Razafimanantsoa, L. T., Rakotojoelinandrasana, T....Reynes, J. (2010). Rift Valley Fever during Rainy Seasons, Madagascar, 2008 and 2009. Emerging Infectious Diseases, 16(6), 963-970. https://doi.org/10.3201/eid1606.091266.

Astrovirus Encephalitis in Boy with X-linked Agammaglobulinemia [PDF - 396 KB - 8 pages]
P. Quan et al.

Encephalitis is a major cause of death worldwide. Although >100 pathogens have been identified as causative agents, the pathogen is not determined for up to 75% of cases. This diagnostic failure impedes effective treatment and underscores the need for better tools and new approaches for detecting novel pathogens or determining new manifestations of known pathogens. Although astroviruses are commonly associated with gastroenteritis, they have not been associated with central nervous system disease. Using unbiased pyrosequencing, we detected an astrovirus as the causative agent for encephalitis in a 15-year-old boy with agammaglobulinemia; several laboratories had failed to identify the agent. Our findings expand the spectrum of causative agents associated with encephalitis and highlight unbiased molecular technology as a valuable tool for differential diagnosis of unexplained disease.

EID Quan P, Wagner TA, Briese T, Torgerson TR, Hornig M, Tashmukhamedova A, et al. Astrovirus Encephalitis in Boy with X-linked Agammaglobulinemia. Emerg Infect Dis. 2010;16(6):918-925. https://doi.org/10.3201/eid1606.091536
AMA Quan P, Wagner TA, Briese T, et al. Astrovirus Encephalitis in Boy with X-linked Agammaglobulinemia. Emerging Infectious Diseases. 2010;16(6):918-925. doi:10.3201/eid1606.091536.
APA Quan, P., Wagner, T. A., Briese, T., Torgerson, T. R., Hornig, M., Tashmukhamedova, A....Lipkin, W. (2010). Astrovirus Encephalitis in Boy with X-linked Agammaglobulinemia. Emerging Infectious Diseases, 16(6), 918-925. https://doi.org/10.3201/eid1606.091536.
Dispatches

Medscape CME Activity
Invasive Aspergillosis after Pandemic (H1N1) 2009 [PDF - 214 KB - 3 pages]
A. Lat et al.

We report 2 patients with invasive aspergillosis after infection with pandemic (H1N1) 2009. Influenza viruses are known to cause immunologic defects and impair ciliary clearance. These defects, combined with high-dose corticosteroids prescribed during influenza-associated adult respiratory distress syndrome, may be novel risk factors predisposing otherwise immunocompetent patients to invasive aspergillosis.

EID Lat A, Bhadelia N, Miko B, Furuya EY, Thompson GR. Invasive Aspergillosis after Pandemic (H1N1) 2009. Emerg Infect Dis. 2010;16(6):971-973. https://doi.org/10.3201/eid1606.100165
AMA Lat A, Bhadelia N, Miko B, et al. Invasive Aspergillosis after Pandemic (H1N1) 2009. Emerging Infectious Diseases. 2010;16(6):971-973. doi:10.3201/eid1606.100165.
APA Lat, A., Bhadelia, N., Miko, B., Furuya, E. Y., & Thompson, G. R. (2010). Invasive Aspergillosis after Pandemic (H1N1) 2009. Emerging Infectious Diseases, 16(6), 971-973. https://doi.org/10.3201/eid1606.100165.

Causes of Infection after Earthquake, China, 2008 [PDF - 117 KB - 2 pages]
Y. Wang et al.

To determine which organisms most commonly cause infection after natural disasters, we cultured specimens from injured earthquake survivors in Wenchuan, China, 2008. Of 123 cultures, 46 (59%) grew only 1 type of pathogenic bacteria. Smear was more effective than culture for early diagnosis of gas gangrene. Early diagnosis and treatment of wounds are crucial.

EID Wang Y, Hao P, Lu B, Yu H, Huang W, Hou H, et al. Causes of Infection after Earthquake, China, 2008. Emerg Infect Dis. 2010;16(6):974-975. https://doi.org/10.3201/eid1606.091523
AMA Wang Y, Hao P, Lu B, et al. Causes of Infection after Earthquake, China, 2008. Emerging Infectious Diseases. 2010;16(6):974-975. doi:10.3201/eid1606.091523.
APA Wang, Y., Hao, P., Lu, B., Yu, H., Huang, W., Hou, H....Dai, K. (2010). Causes of Infection after Earthquake, China, 2008. Emerging Infectious Diseases, 16(6), 974-975. https://doi.org/10.3201/eid1606.091523.

Vaccinia Virus Infection in Monkeys, Brazilian Amazon [PDF - 293 KB - 4 pages]
J. S. Abrahão et al.

To detect orthopoxvirus in the Brazilian Amazon, we conducted a serosurvey of 344 wild animals. Neutralizing antibodies against orthopoxvirus were detected by plaque-reduction neutralizing tests in 84 serum samples. Amplicons from 6 monkey samples were sequenced. These amplicons identified vaccinia virus genetically similar to strains from bovine vaccinia outbreaks in Brazil.

EID Abrahão JS, Silva-Fernandes AT, Lima LS, Campos RK, Guedes MI, Cota MM, et al. Vaccinia Virus Infection in Monkeys, Brazilian Amazon. Emerg Infect Dis. 2010;16(6):976-979. https://doi.org/10.3201/eid1606.091187
AMA Abrahão JS, Silva-Fernandes AT, Lima LS, et al. Vaccinia Virus Infection in Monkeys, Brazilian Amazon. Emerging Infectious Diseases. 2010;16(6):976-979. doi:10.3201/eid1606.091187.
APA Abrahão, J. S., Silva-Fernandes, A. T., Lima, L. S., Campos, R. K., Guedes, M. I., Cota, M. M....G., E. (2010). Vaccinia Virus Infection in Monkeys, Brazilian Amazon. Emerging Infectious Diseases, 16(6), 976-979. https://doi.org/10.3201/eid1606.091187.

Novel Norovirus in Dogs with Diarrhea [PDF - 184 KB - 3 pages]
J. R. Mesquita et al.

To identify the prevalence and genetic variability of noroviruses in dogs, we tested fecal samples by using reverse transcription–PCR. We found canine norovirus in 40% and 9% of dogs with and without diarrhea, respectively. The virus was genetically unrelated to other noroviruses and constitutes a tentative new genogroup.

EID Mesquita JR, Barclay L, Nascimento MS, Vinjé J. Novel Norovirus in Dogs with Diarrhea. Emerg Infect Dis. 2010;16(6):980-982. https://doi.org/10.3201/eid1606.091861
AMA Mesquita JR, Barclay L, Nascimento MS, et al. Novel Norovirus in Dogs with Diarrhea. Emerging Infectious Diseases. 2010;16(6):980-982. doi:10.3201/eid1606.091861.
APA Mesquita, J. R., Barclay, L., Nascimento, M. S., & Vinjé, J. (2010). Novel Norovirus in Dogs with Diarrhea. Emerging Infectious Diseases, 16(6), 980-982. https://doi.org/10.3201/eid1606.091861.

Pulsed-field Gel Electrophoresis for Salmonella Infection Surveillance, Texas, USA, 2007 [PDF - 125 KB - 3 pages]
S. G. Long et al.

To identify sources of transmission for area clusters, in 2007 the Houston Department of Health and Human Services conducted an 8-month study of enhanced surveillance of Salmonella infection. Protocol included patient interviews and linking the results of interviews to clusters of pulsed-field gel electrophoresis patterns detected by the local PulseNet laboratory.

EID Long SG, DuPont HL, Gaul L, Arafat RR, Selwyn BJ, Rogers J, et al. Pulsed-field Gel Electrophoresis for Salmonella Infection Surveillance, Texas, USA, 2007. Emerg Infect Dis. 2010;16(6):983-985. https://doi.org/10.3201/eid1606.091276
AMA Long SG, DuPont HL, Gaul L, et al. Pulsed-field Gel Electrophoresis for Salmonella Infection Surveillance, Texas, USA, 2007. Emerging Infectious Diseases. 2010;16(6):983-985. doi:10.3201/eid1606.091276.
APA Long, S. G., DuPont, H. L., Gaul, L., Arafat, R. R., Selwyn, B. J., Rogers, J....Casey, E. (2010). Pulsed-field Gel Electrophoresis for Salmonella Infection Surveillance, Texas, USA, 2007. Emerging Infectious Diseases, 16(6), 983-985. https://doi.org/10.3201/eid1606.091276.

Novel Betaherpesvirus in Bats [PDF - 265 KB - 3 pages]
S. Watanabe et al.

Because bats are associated with emerging zoonoses, identification and characterization of novel viruses from bats is needed. Using a modified rapid determination system for viral RNA/DNA sequences, we identified a novel bat betaherpesvirus 2 not detected by herpesvirus consensus PCR. This modified system is useful for detecting unknown viruses.

EID Watanabe S, Maeda K, Suzuki K, Ueda N, Iha K, Taniguchi S, et al. Novel Betaherpesvirus in Bats. Emerg Infect Dis. 2010;16(6):986-988. https://doi.org/10.3201/eid1606.091567
AMA Watanabe S, Maeda K, Suzuki K, et al. Novel Betaherpesvirus in Bats. Emerging Infectious Diseases. 2010;16(6):986-988. doi:10.3201/eid1606.091567.
APA Watanabe, S., Maeda, K., Suzuki, K., Ueda, N., Iha, K., Taniguchi, S....Mizutani, T. (2010). Novel Betaherpesvirus in Bats. Emerging Infectious Diseases, 16(6), 986-988. https://doi.org/10.3201/eid1606.091567.

Dengue Virus 3 Genotype I in Aedes aegypti Mosquitoes and Eggs, Brazil, 2005–2006 [PDF - 298 KB - 4 pages]
A. P. Vilela et al.

Dengue virus type 3 genotype I was detected in Brazil during epidemics in 2002–2004. To confirm this finding, we identified this virus genotype in naturally infected field-caught Aedes aegypti mosquitoes and eggs. Results showed usefulness of virus investigations in vectors as a component of active epidemiologic surveillance.

EID Vilela AP, Figueiredo LB, dos Santos JR, Eiras ÁE, Bonjardim CA, Ferreira P, et al. Dengue Virus 3 Genotype I in Aedes aegypti Mosquitoes and Eggs, Brazil, 2005–2006. Emerg Infect Dis. 2010;16(6):989-992. https://doi.org/10.3201/eid1606.091000
AMA Vilela AP, Figueiredo LB, dos Santos JR, et al. Dengue Virus 3 Genotype I in Aedes aegypti Mosquitoes and Eggs, Brazil, 2005–2006. Emerging Infectious Diseases. 2010;16(6):989-992. doi:10.3201/eid1606.091000.
APA Vilela, A. P., Figueiredo, L. B., dos Santos, J. R., Eiras, Á. E., Bonjardim, C. A., Ferreira, P....G., E. (2010). Dengue Virus 3 Genotype I in Aedes aegypti Mosquitoes and Eggs, Brazil, 2005–2006. Emerging Infectious Diseases, 16(6), 989-992. https://doi.org/10.3201/eid1606.091000.

Pneumovirus in Dogs with Acute Respiratory Disease [PDF - 178 KB - 3 pages]
R. W. Renshaw et al.

To determine which respiratory viruses circulate among confined dogs, we analyzed nasal and pharyngeal swab specimens from shelter dogs with acute respiratory disease. An unknown virus was isolated. Monoclonal antibody testing indicated that it was probably a pneumovirus. PCR and sequence analysis indicated that it was closely related to murine pneumovirus.

EID Renshaw RW, Zylich NC, Laverack MA, Glaser AL, Dubovi EJ. Pneumovirus in Dogs with Acute Respiratory Disease. Emerg Infect Dis. 2010;16(6):993-995. https://doi.org/10.3201/eid1606.091778
AMA Renshaw RW, Zylich NC, Laverack MA, et al. Pneumovirus in Dogs with Acute Respiratory Disease. Emerging Infectious Diseases. 2010;16(6):993-995. doi:10.3201/eid1606.091778.
APA Renshaw, R. W., Zylich, N. C., Laverack, M. A., Glaser, A. L., & Dubovi, E. J. (2010). Pneumovirus in Dogs with Acute Respiratory Disease. Emerging Infectious Diseases, 16(6), 993-995. https://doi.org/10.3201/eid1606.091778.

Rhinovirus C and Respiratory Exacerbations in Children with Cystic Fibrosis [PDF - 195 KB - 4 pages]
M. B. de Almeida et al.

To investigate a possible role for human rhinovirus C in respiratory exacerbations of children with cystic fibrosis, we conducted microbiologic testing on respiratory specimens from 103 such patients in São Paulo, Brazil, during 2006–2007. A significant association was found between the presence of human rhinovirus C and respiratory exacerbations.

EID de Almeida MB, Zerbinati RM, Tateno AF, Oliveira CM, Romão RM, Rodrigues JC, et al. Rhinovirus C and Respiratory Exacerbations in Children with Cystic Fibrosis. Emerg Infect Dis. 2010;16(6):996-999. https://doi.org/10.3201/eid1606.100063
AMA de Almeida MB, Zerbinati RM, Tateno AF, et al. Rhinovirus C and Respiratory Exacerbations in Children with Cystic Fibrosis. Emerging Infectious Diseases. 2010;16(6):996-999. doi:10.3201/eid1606.100063.
APA de Almeida, M. B., Zerbinati, R. M., Tateno, A. F., Oliveira, C. M., Romão, R. M., Rodrigues, J. C....Filho, L. V. (2010). Rhinovirus C and Respiratory Exacerbations in Children with Cystic Fibrosis. Emerging Infectious Diseases, 16(6), 996-999. https://doi.org/10.3201/eid1606.100063.

Xenotropic Murine Leukemia Virus–related Gammaretrovirus in Respiratory Tract [PDF - 151 KB - 3 pages]
N. Fischer et al.

Xenotropic murine leukemia virus–related gammaretrovirus (XMRV) has been recently associated with prostate cancer and chronic fatigue syndrome. To identify nucleic acid sequences, we examined respiratory secretions by using PCR. XMRV-specific sequences were detected in 2%–3% of samples from 168 immunocompetent carriers and ≈10% of samples from 161 immunocompromised patients.

EID Fischer N, Schulz C, Stieler K, Hohn O, Lange C, Park S, et al. Xenotropic Murine Leukemia Virus–related Gammaretrovirus in Respiratory Tract. Emerg Infect Dis. 2010;16(6):1000-1002. https://doi.org/10.3201/eid1606.100066
AMA Fischer N, Schulz C, Stieler K, et al. Xenotropic Murine Leukemia Virus–related Gammaretrovirus in Respiratory Tract. Emerging Infectious Diseases. 2010;16(6):1000-1002. doi:10.3201/eid1606.100066.
APA Fischer, N., Schulz, C., Stieler, K., Hohn, O., Lange, C., Park, S....Aepfelbacher, M. (2010). Xenotropic Murine Leukemia Virus–related Gammaretrovirus in Respiratory Tract. Emerging Infectious Diseases, 16(6), 1000-1002. https://doi.org/10.3201/eid1606.100066.

Variations in Human Herpesvirus Type 8 Seroprevalence in Native Americans, South America [PDF - 217 KB - 4 pages]
V. A. Souza et al.

To determine the epidemiology of human herpesvirus type 8 (HHV-8) among non-Amazonian native populations, we conducted a cross-sectional study in Brazil, Bolivia, and Paraquay. Our data show striking ethnic and geographic variations in the distribution of HHV-8 seroprevalences in Amazonian (77%) and non-Amazonian native populations (range 0%–83%).

EID Souza VA, Salzano FM, Petzl-Erler ML, Nascimento MC, Mayaud P, Borges JD, et al. Variations in Human Herpesvirus Type 8 Seroprevalence in Native Americans, South America. Emerg Infect Dis. 2010;16(6):1003-1006. https://doi.org/10.3201/eid1606.090961
AMA Souza VA, Salzano FM, Petzl-Erler ML, et al. Variations in Human Herpesvirus Type 8 Seroprevalence in Native Americans, South America. Emerging Infectious Diseases. 2010;16(6):1003-1006. doi:10.3201/eid1606.090961.
APA Souza, V. A., Salzano, F. M., Petzl-Erler, M. L., Nascimento, M. C., Mayaud, P., Borges, J. D....Pannuti, C. S. (2010). Variations in Human Herpesvirus Type 8 Seroprevalence in Native Americans, South America. Emerging Infectious Diseases, 16(6), 1003-1006. https://doi.org/10.3201/eid1606.090961.

Genetic Evidence for a Tacaribe Serocomplex Virus, Mexico [PDF - 217 KB - 4 pages]
C. C. Inizan et al.

We isolated arenavirus RNA from white-toothed woodrats (Neotoma leucodon) captured in a region of Mexico in which woodrats are food for humans. Analyses of nucleotide and amino acid sequence data indicated that the woodrats were infected with a novel Tacaribe serocomplex virus, proposed name Real de Catorce virus.

EID Inizan CC, Cajimat MN, Milazzo ML, Barragán-Gomez A, Bradley RD, Fulhorst CF. Genetic Evidence for a Tacaribe Serocomplex Virus, Mexico. Emerg Infect Dis. 2010;16(6):1007-1010. https://doi.org/10.3201/eid1606.091648
AMA Inizan CC, Cajimat MN, Milazzo ML, et al. Genetic Evidence for a Tacaribe Serocomplex Virus, Mexico. Emerging Infectious Diseases. 2010;16(6):1007-1010. doi:10.3201/eid1606.091648.
APA Inizan, C. C., Cajimat, M. N., Milazzo, M. L., Barragán-Gomez, A., Bradley, R. D., & Fulhorst, C. F. (2010). Genetic Evidence for a Tacaribe Serocomplex Virus, Mexico. Emerging Infectious Diseases, 16(6), 1007-1010. https://doi.org/10.3201/eid1606.091648.

Pandemic (H1N1) 2009, Shanghai, China [PDF - 199 KB - 3 pages]
Y. Shen and H. Lu

To understand the clinical and epidemiologic characteristics of pandemic (H1N1) 2009 virus infection, we retrospectively reviewed medical records of 237 patients with laboratory-confirmed cases reported in Shanghai, China, during May–July 2009. Surveillance activities effectively contained the outbreak and provided useful epidemiologic data for future strategies.

EID Shen Y, Lu H. Pandemic (H1N1) 2009, Shanghai, China. Emerg Infect Dis. 2010;16(6):1011-1013. https://doi.org/10.3201/eid1606.090991
AMA Shen Y, Lu H. Pandemic (H1N1) 2009, Shanghai, China. Emerging Infectious Diseases. 2010;16(6):1011-1013. doi:10.3201/eid1606.090991.
APA Shen, Y., & Lu, H. (2010). Pandemic (H1N1) 2009, Shanghai, China. Emerging Infectious Diseases, 16(6), 1011-1013. https://doi.org/10.3201/eid1606.090991.

Transfer of Carbapenem-Resistant Plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in Patient [PDF - 459 KB - 4 pages]
M. G. Goren et al.

Klebsiella pneumoniae carbapenemase (KPC) 3–producing Escherichia coli was isolated from a carrier of KPC-3–producing K. pneumoniae. The KPC-3 plasmid was identical in isolates of both species. The patient's gut flora contained a carbapenem-susceptible E. coli strain isogenic with the KPC-3–producing isolate, which suggests horizontal interspecies plasmid transfer.

EID Goren MG, Carmeli Y, Schwaber MJ, Chmelnitsky I, Schechner V, Navon-Venezia S. Transfer of Carbapenem-Resistant Plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in Patient. Emerg Infect Dis. 2010;16(6):1014-1017. https://doi.org/10.3201/eid1606.091671
AMA Goren MG, Carmeli Y, Schwaber MJ, et al. Transfer of Carbapenem-Resistant Plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in Patient. Emerging Infectious Diseases. 2010;16(6):1014-1017. doi:10.3201/eid1606.091671.
APA Goren, M. G., Carmeli, Y., Schwaber, M. J., Chmelnitsky, I., Schechner, V., & Navon-Venezia, S. (2010). Transfer of Carbapenem-Resistant Plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in Patient. Emerging Infectious Diseases, 16(6), 1014-1017. https://doi.org/10.3201/eid1606.091671.

Enterovirus Genotype EV-104 in Humans, Italy, 2008–2009 [PDF - 344 KB - 4 pages]
A. Piralla et al.

In an epidemiologic investigation of respiratory infections in Italy, October 2008–September 2009, we tested samples from patients for respiratory viruses. Human enterovirus genotype EV-104 (identified in Switzerland) was found in 3 immunocompromised and 2 immunocompetent patients. EV-104 is closely related to human rhinoviruses; thus, both types of viruses should be sought in respiratory syndromes.

EID Piralla A, Rovida F, Baldanti F, Gerna G. Enterovirus Genotype EV-104 in Humans, Italy, 2008–2009. Emerg Infect Dis. 2010;16(6):1018-1021. https://doi.org/10.3201/eid1606.091533
AMA Piralla A, Rovida F, Baldanti F, et al. Enterovirus Genotype EV-104 in Humans, Italy, 2008–2009. Emerging Infectious Diseases. 2010;16(6):1018-1021. doi:10.3201/eid1606.091533.
APA Piralla, A., Rovida, F., Baldanti, F., & Gerna, G. (2010). Enterovirus Genotype EV-104 in Humans, Italy, 2008–2009. Emerging Infectious Diseases, 16(6), 1018-1021. https://doi.org/10.3201/eid1606.091533.
Commentaries

Whence Feral Vaccinia? [PDF - 109 KB - 1 page]
R. C. Condit
EID Condit RC. Whence Feral Vaccinia?. Emerg Infect Dis. 2010;16(6):1022. https://doi.org/10.3201/eid1606.100315
AMA Condit RC. Whence Feral Vaccinia?. Emerging Infectious Diseases. 2010;16(6):1022. doi:10.3201/eid1606.100315.
APA Condit, R. C. (2010). Whence Feral Vaccinia?. Emerging Infectious Diseases, 16(6), 1022. https://doi.org/10.3201/eid1606.100315.

The Wages of Original Antigenic Sin [PDF - 138 KB - 2 pages]
D. M. Morens et al.
EID Morens DM, Burke DS, Halstead SB. The Wages of Original Antigenic Sin. Emerg Infect Dis. 2010;16(6):1023-1024. https://doi.org/10.3201/eid1606.100453
AMA Morens DM, Burke DS, Halstead SB. The Wages of Original Antigenic Sin. Emerging Infectious Diseases. 2010;16(6):1023-1024. doi:10.3201/eid1606.100453.
APA Morens, D. M., Burke, D. S., & Halstead, S. B. (2010). The Wages of Original Antigenic Sin. Emerging Infectious Diseases, 16(6), 1023-1024. https://doi.org/10.3201/eid1606.100453.
Photo Quizzes

Photo Quiz [PDF - 188 KB - 3 pages]
M. G. Schultz
EID Schultz MG. Photo Quiz. Emerg Infect Dis. 2010;16(6):1025-1027. https://doi.org/10.3201/eid1606.091937
AMA Schultz MG. Photo Quiz. Emerging Infectious Diseases. 2010;16(6):1025-1027. doi:10.3201/eid1606.091937.
APA Schultz, M. G. (2010). Photo Quiz. Emerging Infectious Diseases, 16(6), 1025-1027. https://doi.org/10.3201/eid1606.091937.
Letters

Original Antigenic Sin and Pandemic (H1N1) 2009 [PDF - 98 KB - 2 pages]
A. A. Adalja and D. Henderson
EID Adalja AA, Henderson D. Original Antigenic Sin and Pandemic (H1N1) 2009. Emerg Infect Dis. 2010;16(6):1028-1029. https://doi.org/10.3201/eid1606.091653
AMA Adalja AA, Henderson D. Original Antigenic Sin and Pandemic (H1N1) 2009. Emerging Infectious Diseases. 2010;16(6):1028-1029. doi:10.3201/eid1606.091653.
APA Adalja, A. A., & Henderson, D. (2010). Original Antigenic Sin and Pandemic (H1N1) 2009. Emerging Infectious Diseases, 16(6), 1028-1029. https://doi.org/10.3201/eid1606.091653.

Swine Influenza A Vaccines, Pandemic (H1N1) 2009 Virus, and Cross-Reactivity [PDF - 75 KB - 2 pages]
R. Dürrwald et al.
EID Dürrwald R, Krumbholz A, Baumgarte S, Schlegel M, Vahlenkamp TW, Selbitz H, et al. Swine Influenza A Vaccines, Pandemic (H1N1) 2009 Virus, and Cross-Reactivity. Emerg Infect Dis. 2010;16(6):1029-1030. https://doi.org/10.3201/eid1606.100138
AMA Dürrwald R, Krumbholz A, Baumgarte S, et al. Swine Influenza A Vaccines, Pandemic (H1N1) 2009 Virus, and Cross-Reactivity. Emerging Infectious Diseases. 2010;16(6):1029-1030. doi:10.3201/eid1606.100138.
APA Dürrwald, R., Krumbholz, A., Baumgarte, S., Schlegel, M., Vahlenkamp, T. W., Selbitz, H....Zell, R. (2010). Swine Influenza A Vaccines, Pandemic (H1N1) 2009 Virus, and Cross-Reactivity. Emerging Infectious Diseases, 16(6), 1029-1030. https://doi.org/10.3201/eid1606.100138.

Human Anaplasmosis and Anaplasma ovis Variant [PDF - 136 KB - 2 pages]
D. Chochlakis et al.
EID Chochlakis D, Ioannou I, Tselentis Y, Psaroulaki A. Human Anaplasmosis and Anaplasma ovis Variant. Emerg Infect Dis. 2010;16(6):1031-1032. https://doi.org/10.3201/eid1606.090175
AMA Chochlakis D, Ioannou I, Tselentis Y, et al. Human Anaplasmosis and Anaplasma ovis Variant. Emerging Infectious Diseases. 2010;16(6):1031-1032. doi:10.3201/eid1606.090175.
APA Chochlakis, D., Ioannou, I., Tselentis, Y., & Psaroulaki, A. (2010). Human Anaplasmosis and Anaplasma ovis Variant. Emerging Infectious Diseases, 16(6), 1031-1032. https://doi.org/10.3201/eid1606.090175.

Diagnostic Difficulties with Plasmodium knowlesi Infection in Humans [PDF - 100 KB - 2 pages]
E. Sulistyaningsih et al.
EID Sulistyaningsih E, Fitri LE, Löscher T, Berens-Riha N. Diagnostic Difficulties with Plasmodium knowlesi Infection in Humans. Emerg Infect Dis. 2010;16(6):1033-1034. https://doi.org/10.3201/eid1606.100022
AMA Sulistyaningsih E, Fitri LE, Löscher T, et al. Diagnostic Difficulties with Plasmodium knowlesi Infection in Humans. Emerging Infectious Diseases. 2010;16(6):1033-1034. doi:10.3201/eid1606.100022.
APA Sulistyaningsih, E., Fitri, L. E., Löscher, T., & Berens-Riha, N. (2010). Diagnostic Difficulties with Plasmodium knowlesi Infection in Humans. Emerging Infectious Diseases, 16(6), 1033-1034. https://doi.org/10.3201/eid1606.100022.

Toscana Virus Infection Imported from Elba into Switzerland [PDF - 142 KB - 3 pages]
M. Gabriel et al.
EID Gabriel M, Resch C, Günther S, Schmidt-Chanasit J. Toscana Virus Infection Imported from Elba into Switzerland. Emerg Infect Dis. 2010;16(6):1034-1036. https://doi.org/10.3201/eid1606.091763
AMA Gabriel M, Resch C, Günther S, et al. Toscana Virus Infection Imported from Elba into Switzerland. Emerging Infectious Diseases. 2010;16(6):1034-1036. doi:10.3201/eid1606.091763.
APA Gabriel, M., Resch, C., Günther, S., & Schmidt-Chanasit, J. (2010). Toscana Virus Infection Imported from Elba into Switzerland. Emerging Infectious Diseases, 16(6), 1034-1036. https://doi.org/10.3201/eid1606.091763.

Imported Mollusks and Dissemination of Human Enteric Viruses [PDF - 94 KB - 3 pages]
D. Polo et al.
EID Polo D, Vilariño ML, Manso CF, Romalde JL. Imported Mollusks and Dissemination of Human Enteric Viruses. Emerg Infect Dis. 2010;16(6):1036-1038. https://doi.org/10.3201/eid1606.091748
AMA Polo D, Vilariño ML, Manso CF, et al. Imported Mollusks and Dissemination of Human Enteric Viruses. Emerging Infectious Diseases. 2010;16(6):1036-1038. doi:10.3201/eid1606.091748.
APA Polo, D., Vilariño, M. L., Manso, C. F., & Romalde, J. L. (2010). Imported Mollusks and Dissemination of Human Enteric Viruses. Emerging Infectious Diseases, 16(6), 1036-1038. https://doi.org/10.3201/eid1606.091748.

Atypical Chikungunya Virus Infections in Immunocompromised Patients [PDF - 141 KB - 3 pages]
A. C. Kee et al.
EID Kee AC, Yang S, Tambyah P. Atypical Chikungunya Virus Infections in Immunocompromised Patients. Emerg Infect Dis. 2010;16(6):1038-1040. https://doi.org/10.3201/eid1606.091115
AMA Kee AC, Yang S, Tambyah P. Atypical Chikungunya Virus Infections in Immunocompromised Patients. Emerging Infectious Diseases. 2010;16(6):1038-1040. doi:10.3201/eid1606.091115.
APA Kee, A. C., Yang, S., & Tambyah, P. (2010). Atypical Chikungunya Virus Infections in Immunocompromised Patients. Emerging Infectious Diseases, 16(6), 1038-1040. https://doi.org/10.3201/eid1606.091115.

Lassa Fever, Nigeria, 2005–2008 [PDF - 103 KB - 2 pages]
D. U. Ehichioya et al.
EID Ehichioya DU, Hass M, Ölschläger S, Becker-Ziaja B, Chukwu CO, Coker J, et al. Lassa Fever, Nigeria, 2005–2008. Emerg Infect Dis. 2010;16(6):1040-1041. https://doi.org/10.3201/eid1606.100080
AMA Ehichioya DU, Hass M, Ölschläger S, et al. Lassa Fever, Nigeria, 2005–2008. Emerging Infectious Diseases. 2010;16(6):1040-1041. doi:10.3201/eid1606.100080.
APA Ehichioya, D. U., Hass, M., Ölschläger, S., Becker-Ziaja, B., Chukwu, C. O., Coker, J....Omilabu, S. A. (2010). Lassa Fever, Nigeria, 2005–2008. Emerging Infectious Diseases, 16(6), 1040-1041. https://doi.org/10.3201/eid1606.100080.

Laboratory Diagnosis of Lassa Fever, Liberia [PDF - 122 KB - 3 pages]
M. Panning et al.
EID Panning M, Emmerich P, Ölschläger S, Bojenko S, Koivogui L, Marx A, et al. Laboratory Diagnosis of Lassa Fever, Liberia. Emerg Infect Dis. 2010;16(6):1041-1043. https://doi.org/10.3201/eid1606.100040
AMA Panning M, Emmerich P, Ölschläger S, et al. Laboratory Diagnosis of Lassa Fever, Liberia. Emerging Infectious Diseases. 2010;16(6):1041-1043. doi:10.3201/eid1606.100040.
APA Panning, M., Emmerich, P., Ölschläger, S., Bojenko, S., Koivogui, L., Marx, A....Park, S. (2010). Laboratory Diagnosis of Lassa Fever, Liberia. Emerging Infectious Diseases, 16(6), 1041-1043. https://doi.org/10.3201/eid1606.100040.

Pandemic (H1N1) 2009 in Skunks, Canada [PDF - 95 KB - 3 pages]
A. P. Britton et al.
EID Britton AP, Sojonky KR, Scouras AP, Bidulka JJ. Pandemic (H1N1) 2009 in Skunks, Canada. Emerg Infect Dis. 2010;16(6):1043-1045. https://doi.org/10.3201/eid1606.100352
AMA Britton AP, Sojonky KR, Scouras AP, et al. Pandemic (H1N1) 2009 in Skunks, Canada. Emerging Infectious Diseases. 2010;16(6):1043-1045. doi:10.3201/eid1606.100352.
APA Britton, A. P., Sojonky, K. R., Scouras, A. P., & Bidulka, J. J. (2010). Pandemic (H1N1) 2009 in Skunks, Canada. Emerging Infectious Diseases, 16(6), 1043-1045. https://doi.org/10.3201/eid1606.100352.

Community-acquired Oseltamivir-Resistant Pandemic (H1N1) 2009 in Child, Israel [PDF - 78 KB - 2 pages]
Z. Zonis et al.
EID Zonis Z, Engelhard D, Hindiyeh M, Ram D, Mandelboim M, Mendelson E, et al. Community-acquired Oseltamivir-Resistant Pandemic (H1N1) 2009 in Child, Israel. Emerg Infect Dis. 2010;16(6):1045-1046. https://doi.org/10.3201/eid1606.091875
AMA Zonis Z, Engelhard D, Hindiyeh M, et al. Community-acquired Oseltamivir-Resistant Pandemic (H1N1) 2009 in Child, Israel. Emerging Infectious Diseases. 2010;16(6):1045-1046. doi:10.3201/eid1606.091875.
APA Zonis, Z., Engelhard, D., Hindiyeh, M., Ram, D., Mandelboim, M., Mendelson, E....Glikman, D. (2010). Community-acquired Oseltamivir-Resistant Pandemic (H1N1) 2009 in Child, Israel. Emerging Infectious Diseases, 16(6), 1045-1046. https://doi.org/10.3201/eid1606.091875.

Human Infection with Lymphocytic Choriomeningitis Virus [PDF - 78 KB - 2 pages]
L. L. Barton
EID Barton LL. Human Infection with Lymphocytic Choriomeningitis Virus. Emerg Infect Dis. 2010;16(6):1046-1047. https://doi.org/10.3201/eid1606.100250
AMA Barton LL. Human Infection with Lymphocytic Choriomeningitis Virus. Emerging Infectious Diseases. 2010;16(6):1046-1047. doi:10.3201/eid1606.100250.
APA Barton, L. L. (2010). Human Infection with Lymphocytic Choriomeningitis Virus. Emerging Infectious Diseases, 16(6), 1046-1047. https://doi.org/10.3201/eid1606.100250.

Increasing Incidence of Nontuberculous Mycobacteria, Taiwan, 2000–2008 [PDF - 88 KB - 2 pages]
E. Hernández-Garduño and R. K. Elwood
EID Hernández-Garduño E, Elwood RK. Increasing Incidence of Nontuberculous Mycobacteria, Taiwan, 2000–2008. Emerg Infect Dis. 2010;16(6):1047-1048. https://doi.org/10.3201/eid1606.100228
AMA Hernández-Garduño E, Elwood RK. Increasing Incidence of Nontuberculous Mycobacteria, Taiwan, 2000–2008. Emerging Infectious Diseases. 2010;16(6):1047-1048. doi:10.3201/eid1606.100228.
APA Hernández-Garduño, E., & Elwood, R. K. (2010). Increasing Incidence of Nontuberculous Mycobacteria, Taiwan, 2000–2008. Emerging Infectious Diseases, 16(6), 1047-1048. https://doi.org/10.3201/eid1606.100228.

Food Reservoir for Escherichia coli Causing Urinary Tract Infections [PDF - 99 KB - 2 pages]
M. Giufrè et al.
EID Giufrè M, Graziani C, Accogli M, Cerquetti M. Food Reservoir for Escherichia coli Causing Urinary Tract Infections. Emerg Infect Dis. 2010;16(6):1048-1049. https://doi.org/10.3201/eid1606.100158
AMA Giufrè M, Graziani C, Accogli M, et al. Food Reservoir for Escherichia coli Causing Urinary Tract Infections. Emerging Infectious Diseases. 2010;16(6):1048-1049. doi:10.3201/eid1606.100158.
APA Giufrè, M., Graziani, C., Accogli, M., & Cerquetti, M. (2010). Food Reservoir for Escherichia coli Causing Urinary Tract Infections. Emerging Infectious Diseases, 16(6), 1048-1049. https://doi.org/10.3201/eid1606.100158.
Books and Media

Human-Animal Medicine: Clinical Approaches to Zoonoses, Toxicants and Other Shared Health Risks
C. Brown
EID Brown C. Human-Animal Medicine: Clinical Approaches to Zoonoses, Toxicants and Other Shared Health Risks. Emerg Infect Dis. 2010;16(6):1050. https://doi.org/10.3201/eid1606.100367
AMA Brown C. Human-Animal Medicine: Clinical Approaches to Zoonoses, Toxicants and Other Shared Health Risks. Emerging Infectious Diseases. 2010;16(6):1050. doi:10.3201/eid1606.100367.
APA Brown, C. (2010). Human-Animal Medicine: Clinical Approaches to Zoonoses, Toxicants and Other Shared Health Risks. Emerging Infectious Diseases, 16(6), 1050. https://doi.org/10.3201/eid1606.100367.

Who’s in Charge? Leadership during Epidemics, Bioterror Attacks, and Other Public Health Crises [PDF - 131 KB - 2 pages]
P. J. McConnon
EID McConnon PJ. Who’s in Charge? Leadership during Epidemics, Bioterror Attacks, and Other Public Health Crises. Emerg Infect Dis. 2010;16(6):1050-1051. https://doi.org/10.3201/eid1606.100345
AMA McConnon PJ. Who’s in Charge? Leadership during Epidemics, Bioterror Attacks, and Other Public Health Crises. Emerging Infectious Diseases. 2010;16(6):1050-1051. doi:10.3201/eid1606.100345.
APA McConnon, P. J. (2010). Who’s in Charge? Leadership during Epidemics, Bioterror Attacks, and Other Public Health Crises. Emerging Infectious Diseases, 16(6), 1050-1051. https://doi.org/10.3201/eid1606.100345.
Etymologia

Etymologia: Lassa [lah sə] virus [PDF - 81 KB - 1 page]
EID Etymologia: Lassa [lah sə] virus. Emerg Infect Dis. 2010;16(6):1049. https://doi.org/10.3201/eid1606.et1606
AMA Etymologia: Lassa [lah sə] virus. Emerging Infectious Diseases. 2010;16(6):1049. doi:10.3201/eid1606.et1606.
APA (2010). Etymologia: Lassa [lah sə] virus. Emerging Infectious Diseases, 16(6), 1049. https://doi.org/10.3201/eid1606.et1606.
About the Cover

The Unbearable Lightness of Being [PDF - 95 KB - 2 pages]
P. Potter
EID Potter P. The Unbearable Lightness of Being. Emerg Infect Dis. 2010;16(6):1052-1053. https://doi.org/10.3201/eid1606.ac1606
AMA Potter P. The Unbearable Lightness of Being. Emerging Infectious Diseases. 2010;16(6):1052-1053. doi:10.3201/eid1606.ac1606.
APA Potter, P. (2010). The Unbearable Lightness of Being. Emerging Infectious Diseases, 16(6), 1052-1053. https://doi.org/10.3201/eid1606.ac1606.
Page created: August 11, 2017
Page updated: August 11, 2017
Page reviewed: August 11, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
edit_01 ScholarOne Submission Portal
Issue Select
GO
GO

Spotlight Topics

 

 

Get Email Updates

To receive email updates about this page, enter your email address:

file_external