Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 8, Number 11—November 2002
THEME ISSUE
Tuberculosis Genotyping
Tuberculosis Genotyping Network, United States

National Tuberculosis Genotyping and Surveillance Network: Analysis of the Genotype Database

Lauren S. Cowan* and Jack T. Crawford*Comments to Author 
Author affiliations: *Centers for Disease Control and Prevention, Atlanta, Georgia, USA;

Main Article

Figure 7

Motifs used to assign spoligotype patterns to spoligotype families. Each spoligotype was analyzed for the bovis (16), africanum (17), East-African-Indian (EA-I) (13,18), X (13), Latin American-Mediterranean 1 and 2 (13,18), and Haarlem a and b spoligotype motifs (10). Each motif definition was modified from the original references to ensure that motifs were not identified in a spoligotype pattern due to an unrelated deletion at the spacers of interest; each of the motif-defining absent spacers must be flanked on both sides by the adjacent spacer. The 43 spacers in the spoligotype pattern are classified with symbols: X: spacer must be present; 0: spacer must be absent; -: spacer may or may not be present; spacers in shaded boxes: at least one of the spacers in the box must be present.

Figure 7. Motifs used to assign spoligotype patterns to spoligotype families. Each spoligotype was analyzed for the bovis (16), africanum (17), East-African-Indian (EA-I) (13,18), X (13), Latin American-Mediterranean 1 and 2 (13,18), and Haarlem a and b spoligotype motifs (10). Each motif definition was modified from the original references to ensure that motifs were not identified in a spoligotype pattern due to an unrelated deletion at the spacers of interest; each of the motif-defining absent spacers must be flanked on both sides by the adjacent spacer. The 43 spacers in the spoligotype pattern are classified with symbols: X: spacer must be present; 0: spacer must be absent; -: spacer may or may not be present; spacers in shaded boxes: at least one of the spacers in the box must be present.

Main Article

References
  1. Crawford  JT, Braden  CR, Schable  BA, Onorato  IM. National Tuberculosis Genotyping and Surveillance Network: design and methods. Emerg Infect Dis. 2002;8:11926.PubMedGoogle Scholar
  2. Dale  JW, Brittain  D, Cataldi  AA, Cousins  D, Crawford  JT, Driscoll  J, Spacer oligonucleotide typing of bacteria of the Mycobacterium tuberculosis complex: recommendations for standardized nomenclature. Int J Tuberc Lung Dis. 2001;5:2169.PubMedGoogle Scholar
  3. Yang  Z, Barnes  PF, Chaves  F, Eisenach  KD, Weis  SE, Bates  JH, Diversity of DNA fingerprints of Mycobacterium tuberculosis isolates in the United States. J Clin Microbiol. 1998;36:10037.PubMedGoogle Scholar
  4. Bifani  PJ, Mathema  B, Kurepina  NE, Kreiswirth  BN. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol. 2002;10:4552. DOIPubMedGoogle Scholar
  5. van Soolingen  D, Qian  L, de Haas  PE, Douglas  JT, Traore  H, Portaels  F, Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol. 1995;33:32348.PubMedGoogle Scholar
  6. Beggs  ML, Eisenach  KD, Cave  MD. Mapping of IS6110 insertion sites in two epidemic strains of Mycobacterium tuberculosis. J Clin Microbiol. 2000;38:29238.PubMedGoogle Scholar
  7. Steinlein  LM, Crawford  JT. Reverse dot blot assay (insertion site typing) for precise detection of sites of IS6110 insertion in the Mycobacterium tuberculosis genome. J Clin Microbiol. 2001;39:8718. DOIPubMedGoogle Scholar
  8. Bifani  P, Moghazeh  S, Shopsin  B, Driscoll  J, Ravikovitch  A, Kreiswirth  BN. Molecular characterization of Mycobacterium tuberculosis H37Rv/Ra variants: distinguishing the mycobacterial laboratory strain. J Clin Microbiol. 2000;38:32004.PubMedGoogle Scholar
  9. Kremer  K, van Soolingen  D, Frothingham  R, Haas  WH, Hermans  PWM, Martin  C, Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol. 1999;37:260718.PubMedGoogle Scholar
  10. Cowan  LS, Mosher  L, Diem  L, Massey  JP, Crawford  JT. Variable-number tandem repeat typing of Mycobacterium tuberculosis isolates with low-copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol. 2002;40:1592602. DOIPubMedGoogle Scholar
  11. Plikaytis  BB, Kurepina  N, Woodley  CL, Butler  WR, Shinnick  TM. Multiplex PCR assay to aid in the identification of the highly transmissible Mycobacterium tuberculosis strain CDC1551. Tuber Lung Dis. 1999;79:2738. DOIPubMedGoogle Scholar
  12. Sebban  M, Mokrousov  I, Rastogi  N, Sola  C. A data-mining approach to spacer oligonucleotide typing of Mycobacterium tuberculosis. Bioinformatics. 2002;18:23543. DOIPubMedGoogle Scholar
  13. Soini  H, Pan  X, Amin  A, Graviss  EA, Siddiqui  A, Musser  JM. Characterization of Mycobacterium tuberculosis isolates from patients in Houston, Texas, by spoligotyping. J Clin Microbiol. 2000;38:66976.PubMedGoogle Scholar
  14. Sreevatsan  S, Pan  X, Stockbauer  K, Connell  ND, Kreiswirth  BN, Whittam  TS, Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A. 1997;94:986974. DOIPubMedGoogle Scholar
  15. Kamerbeek  J, Schouls  L, Kolk  A, van Agterveld  M, van Soolingen  D, Kuijper  S, Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:90714.PubMedGoogle Scholar
  16. Viana-Niero  C, Gutierrez  C, Sola  C, Filliol  I, Boulahbal  F, Vincent  V, Genetic diversity of Mycobacterium africanum clinical isolates based on IS6110-restriction fragment length polymorphism analysis, spoligotyping, and variable number of tandem DNA repeats. J Clin Microbiol. 2001;39:5765. DOIPubMedGoogle Scholar
  17. Sola  C, Filliol  I, Legrand  E, Mokrousov  I, Rastogi  N. Mycobacterium tuberculosis phylogeny reconstruction based on combined numerical analysis with IS1081, IS6110, VNTR, and DR-based spoligotyping suggests the existence of two new phylogeographical clades. J Mol Evol. 2001;53:6809. DOIPubMedGoogle Scholar
  18. Mathema  B, Bifani  PJ, Driscoll  J, Steinlein  L, Kurepina  N, Moghazeh  SL, Identification and evolution of an IS6110 low-copy Mycobacterium tuberculosis cluster. J Infect Dis. 2002;185:6419. DOIPubMedGoogle Scholar
  19. Fomukong  N, Beggs  M, El Hajj  H, Templeton  G, Eisenach  K, Cave  MD. Differences in the prevalence of IS6110 insertion sites in Mycobacterium tuberculosis strains: low and high-copy numbers of IS6110. Tuber Lung Dis. 1998;78:10916. DOIGoogle Scholar

Main Article

Page created: July 19, 2010
Page updated: July 19, 2010
Page reviewed: July 19, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external