Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 9, Number 12—December 2003
Research

Global Distribution of Rubella Virus Genotypes

Du-Ping Zheng*1, Teryl K. Frey*Comments to Author , Joseph P. Icenogle†, Shigetaka Katow†‡, Emily S. Abernathy*†, Ki-Joon Song§, Wen-Bo Xu¶, Vitaly Yarulin#, R.G. Desjatskova#, Yair Aboudy**, Gisela Enders††, and Margaret Croxson‡‡
Author affiliations: *Georgia State University, Atlanta, Georgia, USA; †Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ‡National Institute of Infectious Diseases, Tokyo, Japan; §Korea University, Seoul, Korea; ¶Chinese Centers for Disease Control and Prevention, Beijing, China; #Institute of Viral Preparations, Moscow, Russia; **Chaim Sheba Medical Center, Tel-Hashomer, Israel; ††Institute for Virology, Infectiology and Epidemiology, Stuttgart, Germany; ‡‡Auckland Hospital, Auckland, New Zealand

Main Article

Figure 1

Phylogenetic trees. Unrooted tree was made by the maximum likelihood method in the Tree-Puzzle 5.0 program (25,000 puzzling steps for the tree in A; 10,000 puzzling steps for the tree in B) using the complete E1 gene sequence (1179 nt). Bootstrapping values (out of 100) for each node are given. The tree in A was constructed with half of the rubella genotype I (RGI) and all of the RGII sequences (to allow the reader to read the RGI virus designations); the tree in B is a blowup of the RGI node fr

Figure 1. Phylogenetic trees. Unrooted tree was made by the maximum likelihood method in the Tree-Puzzle 5.0 program (25,000 puzzling steps for the tree in A; 10,000 puzzling steps for the tree in B) using the complete E1 gene sequence (1179 nt). Bootstrapping values (out of 100) for each node are given. The tree in A was constructed with half of the rubella genotype I (RGI) and all of the RGII sequences (to allow the reader to read the RGI virus designations); the tree in B is a blowup of the RGI node from a tree constructed with all of the sequences. In B, sequences used in the previous study (8) are designated by an (*), and sequences of viruses isolated before 1980 are in black. Branches are color-coded as follows: RGI Intercontinental (International) 1961–1986 and 1964–1981, black; RGI Europe 1972–1991, gold; RGI Europe 1986–1994 and Europe 1991–1998, green; RGI China, 1999, gold; RGI USA, 1990–2000, light blue; and branch containing sub-branches from Japan 1987–1991, Intercontinental (International) 1997–2000, Japan, Korea 1994–1996, New Zealand, 1991, and Japan-Philippines, 1997, dark blue. Of these, the black Intercontinental (International), green Europe, light-blue USA, and dark-blue branches were recognized in the previous study (the light-blue branch as US-Japan and the dark-blue branch as Japan-Hong Kong).

Main Article

References
  1. Chantler  J, Wolinsky  JS, Tingle  A. Rubella virus. In: Knipe DM, Howley PM, editors. Fields virology. 4th ed. Philadelphia: Lippincott, Williams, and Wilkins; 2001. p. 963–90.
  2. Plotkin  SA. Rubella. In: Plotkin SA, Orenstein WA, editors. Vaccines. 3rd ed. Philadelphia: Saunders;1999. p. 409–40.
  3. World Health Organization. Preventing congenital rubella syndrome. Wkly Epidemiol Rec. 2000;75:28996.
  4. Castillo-Solorzano  C, Carrasco  P, Tambini  G, Reef  S, Brana  M, De Quadros  CA. New horizons in the control of rubella and prevention of congenital rubella syndrome in the Americas. J Infect Dis. 2003;187(Suppl 1):S14652. DOIPubMedGoogle Scholar
  5. Venczel  L, Rota  J, Dietz  V, Morris-Glasgow  V, Siqueira  M, Quirogz  E, The measles laboratory network in the region of the Americas. J Infect Dis. 2003;187(Suppl 1):S1405. DOIPubMedGoogle Scholar
  6. Frey  TK. Molecular biology of rubella virus. Adv Virus Res. 1994;44:69160. DOIPubMedGoogle Scholar
  7. Frey  TK, Abernathy  ES. Identification of strain-specific nucleotide sequences in the RA27/3 rubella virus vaccine. J Infect Dis. 1993;168:85464.PubMedGoogle Scholar
  8. Frey  TK, Abernathy  ES, Bosma  TJ, Starkey  WG, Corbett  KM, Best  JM, Molecular analysis of rubella virus epidemiology across three continents, North America, Europe, and Asia, 1961–1977. J Infect Dis. 1998;178:64250. DOIPubMedGoogle Scholar
  9. Zheng  DP, Zhu  H, Revello  MG, Gerna  G, Frey  TK. Phylogenetic analysis of rubella virus isolated during a period of epidemic transmission in Italy, 1991–1997. J Infect Dis. 2003;187:158797. DOIPubMedGoogle Scholar
  10. Reef  SE, Frey  TK, Theall  K, Abernathy  E, Burnett  CL, Icenogle  J, The changing epidemiology of rubella in the 1990s, on the verge of elimination and new challenges for control and prevention. JAMA. 2002;287:46472. DOIPubMedGoogle Scholar
  11. Katow  S, Minahara  H, Fukushima  M, Yamaguchi  Y. Molecular epidemiology of rubella by nucleotide sequences of the rubella virus E1 gene in three East Asia countries. J Infect Dis. 1997;176:60216. DOIPubMedGoogle Scholar
  12. Bosma  TJ, Best  JM, Corbett  KM, Banatvala  JE, Starkey  WG. Nucleotide sequence analysis of a major antigenic domain of the E1 glycoprotein of 22 rubella virus isolates. J Gen Virol. 1996;77:252330. DOIPubMedGoogle Scholar
  13. Pugachev  KV, Abernathy  ES, Frey  TK. Genomic sequence of the RA27/3 vaccine strain of rubella virus. Arch Virol. 1997;142:116580. DOIPubMedGoogle Scholar
  14. Schmidt  HA, Strimmer  K, Vingron  M, von Haeseler  A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002;18:5024. DOIPubMedGoogle Scholar
  15. Hasegawa  M, Kishino  H, Yano  K. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:16074. DOIPubMedGoogle Scholar
  16. Page  RDM. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996;12:3578.PubMedGoogle Scholar
  17. Zheng  DP, Zhang  LB, Fang  ZY, Yang  CF, Mulders  M, Pallansch  MA, Distribution of wild type 1 poliovirus genotypes in China. J Infect Dis. 1993;168:13617.PubMedGoogle Scholar
  18. Jin  L, Vyse  A, Brown  DW. The role of RT-PCR assay of oral fluid for diagnosis and surveillance of measles, mumps and rubella. Bull World Health Organ. 2002;80:767.PubMedGoogle Scholar
  19. Vyse  AJ, Lin  L. An RT-PCR assay using oral fluid samples to detect rubella virus genome for epidemiological surveillance. Mol Cell Probes. 2002;16:937. DOIPubMedGoogle Scholar
  20. Bosma  TJ, Corbett  KM, Eckstein  MB, O’Shea  S, Vijayalakshmi  P, Banatvala  JE, Use of PCR for prenatal and postnatal diagnosis of congenital rubella. J Clin Microbiol. 1995;33:28817.PubMedGoogle Scholar
  21. Bosma  TJ, Corbett  KM, O’Shea  S, Banatvala  JE, Best  JM. PCR for detection of rubella virus RNA in clinical samples. J Clin Microbiol. 1995;33:10759.PubMedGoogle Scholar
  22. Tanemura  M, Suzumori  K, Yagami  Y, Katow  S. Diagnosis of fetal rubella infection with reverse transcription and nested polymerase chain reaction: a study of 34 cases diagnosed in fetuses. Am J Obstet Gynecol. 1996;174:57882. DOIPubMedGoogle Scholar
  23. Adams  SD, Tzeng  W-P, Chen  M-H, Frey  TK. Analysis of intermolecular RNA-RNA recombination by rubella virus. Virology. 2003;309:25871. DOIPubMedGoogle Scholar
  24. Ando  T, Noel  JS, Fankhauser  L. Genetic classification of “Norwalk-like viruses.”. J Infect Dis. 2000;181(Suppl 2):33648. DOIPubMedGoogle Scholar

Main Article

1Current address: Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Page created: February 09, 2011
Page updated: February 09, 2011
Page reviewed: February 09, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external