Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 10, Number 12—December 2004
Dispatch

Novel Avian Influenza H7N3 Strain Outbreak, British Columbia

Martin Hirst*, Caroline R. Astell*Comments to Author , Malachi Griffith*, Shaun M. Coughlin*, Michelle Moksa*, Thomas Zeng*, Duane E. Smailus*, Robert A. Holt*, Steven Jones*, Marco A. Marra*, Martin Petric†, Mel Krajden†, David Lawrence†, Annie Mak†, Ron Chow†, Danuta M. Skowronski†, S. Aleina Tweed†, SweeHan Goh†, Robert C. Brunham†, John Robinson‡, Victoria Bowes‡, Ken Sojonky‡, Sean K. Byrne‡, Yan Li§, Darwyn Kobasa§, Tim Booth§, and Mark Paetzel¶
Author affiliations: British Columbia Cancer Agency (BCCA) Genome Sciences Centre, Vancouver, British Columbia, Canada*; British Columbia Centre for Disease Control and University of British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada†; Ministry of Agriculture, Abbotsford, British Columbia, Canada‡; Canadian Centre for Human and Animal Health, Winnipeg, Manitoba, Canada§; Simon Fraser University, Burnaby, British Columbia, Canada¶

Main Article

Figure 2

A homology model of the human A/Canada/504/04 (Hu504) hemagglutinin precursor (HA0) trimer based on the crystal structure of the human strain CV-1 HA0 (PDB: 1HA0) sequence identity 49.9%. A) Molecule A is shown as a green ribbon diagram; molecules B and C are shown in blue and yellow molecular surfaces, respectively. The 8–amino-acid (aa) sequence 335-342 (NPKQAYQK) is shown in red. B) A close up of this region located between molecules A (in green ribbon) and molecule C (in yellow surface). This 8-aa sequence forms a loop, which bumps into the adjoining molecule before energy minimization (gray). Shown in red is the loop after energy minimization, which results in the cleavage site's being pushed out slightly. Shown in blue is the corresponding region for the template structure (PDB code 1HA0). The side chains for arginine 343 and arginine 346 (–1 residue) are shown in stick form. (Since the preparation of this manuscript, the structure of an H7 HA protein has been reported [12]).

Figure 2. A homology model of the human A/Canada/504/04 (Hu504) hemagglutinin precursor (HA0) trimer based on the crystal structure of the human strain CV-1 HA0 (PDB: 1HA0) sequence identity 49.9%. A) Molecule A is shown as a green ribbon diagram; molecules B and C are shown in blue and yellow molecular surfaces, respectively. The 8–amino-acid (aa) sequence 335-342 (NPKQAYQK) is shown in red. B) A close up of this region located between molecules A (in green ribbon) and molecule C (in yellow surface). This 8-aa sequence forms a loop, which bumps into the adjoining molecule before energy minimization (gray). Shown in red is the loop after energy minimization, which results in the cleavage site's being pushed out slightly. Shown in blue is the corresponding region for the template structure (PDB code 1HA0). The side chains for arginine 343 and arginine 346 (–1 residue) are shown in stick form. (Since the preparation of this manuscript, the structure of an H7 HA protein has been reported [12]).

Main Article

References
  1. Garcia  M, Crawford  JM, Latimer  JW, Rivera-Cruz  MVZE, Perdue  ML. Heterogeneity in the hemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol. 1996;77:1493504. DOIPubMedGoogle Scholar
  2. Perdue  M, Crawford  J, Garcia  M, Latimer  JE, Swayne  D. Occurrence and possible mechanisms of cleavage site insertions in the avian influenza hemagglutinin gene. Swayne DE, Slemons RD, editors. Proceedings of the Fourth International Symposium on Avian Influenza. Kennett Square (PA): American Association of Avian Pathologists; 1998. p. 182–93.
  3. Rott  R. The pathogenic determinant of influenza virus. Vet Microbiol. 1992;33:30310. DOIPubMedGoogle Scholar
  4. Stieneke Grober  A, Vey  M, Angliker  H, Shaw  E, Thomas  G, Roberts  C, et al. Influenza virus hemagglutinin with multibasic cleavage site is activated furin, a subtilisin-like endoprotease. EMBO J. 1992;11:240714.PubMedGoogle Scholar
  5. Steinhauer  DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology. 1999;258:120. DOIPubMedGoogle Scholar
  6. Fouchier  RA, Schneeberger  PM, Rozendaal  FW, Broekman  JM, Kemink  SA, Munster  V, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:135661. DOIPubMedGoogle Scholar
  7. Perdue  ML, Garcia  M, Senne  D, Fraire  M. Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res. 1997;49:173. DOIPubMedGoogle Scholar
  8. Tweed  SA, Skowronski  DM, David  ST, Larder  A, Petric  M, Lees  W, et al. Human illness from avian influenza H7N3 in British Columbia. Emerg Infect Dis. 2004;10:21969.PubMedGoogle Scholar
  9. Spackman  E, Senne  DA, Davison  S, Suarez  DL. Sequence analysis of recent H7 avian influenza viruses associated with three different outbreaks in commercial poultry in the United States. J Virol. 2003;77:13399402. DOIPubMedGoogle Scholar
  10. Suarez  DL, Garcia  M, Latimer  J, Senne  D, Perdue  M. Phylogenetic analysis of H7 avian influenza viruses isolated from the live bird markets of the northeast United States. J Virol. 1999;73:356773.PubMedGoogle Scholar
  11. Ha  Y, Stevens  DJ, Skehel  JJ, Wiley  DC. X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus. Virology. 2003;309:20918. DOIPubMedGoogle Scholar
  12. Russell  RJ, Gamblin  SJ, Haire  LF, Stevens  DJ, Xiao  B, Ha  Y, et al. H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology. 2004;325:28796. DOIPubMedGoogle Scholar
  13. Fields  BN, Knipe  DM, Howley  PN, Griffin  DE. Fields virology. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 1054.
  14. Orlich  M, Gottwald  H, Rott  R. Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology. 1994;204:4625. DOIPubMedGoogle Scholar
  15. Khatchikian  D, Orlich  M, Rott  R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature. 1989;340:1567. DOIPubMedGoogle Scholar
  16. Suarez  DL, Senne  DA, Banks  J, Brown  IH, Essen  SC, Lee  C-W, et al. Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis. 2004;10:6939.PubMedGoogle Scholar
  17. Spackman  E, Senne  DA, Myers  TJ, Bulaga  LL, Garber  LP, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:325660. DOIPubMedGoogle Scholar
  18. Hoffmann  E, Stech  J, Guan  Y, Webster  RG, Perez  DR. Universal primer set for the full-length amplification of all influenza viruses. Arch Virol. 2001;146:227580. DOIPubMedGoogle Scholar
  19. Ewing  B, Green  P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8:18694.PubMedGoogle Scholar
  20. Ewing  B, Hillier  L, Wendl  MC, Green  P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998;8:17585.PubMedGoogle Scholar
  21. Gordon  D, Abajian  C, Green  P. Consed: a graphical tool for sequence finishing. Genome Res. 1998;8:195202.PubMedGoogle Scholar
  22. Chen  J, Lee  KH, Steinhauer  DA, Stevens  DJ, Skehel  JJ, Wiley  DC. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell. 1998;95:40917. DOIPubMedGoogle Scholar
  23. Thompson  JD, Higgins  DG, Gibson  TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:467380. DOIPubMedGoogle Scholar
  24. Jones  TA, Zou  JY, Cowan  SW, Kjelgaard  M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991;47:1109. DOIPubMedGoogle Scholar
  25. Brunger  AT, Adams  PD, Clore  GM, DeLano  WL, Gros  P, et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998;54:90521. DOIPubMedGoogle Scholar
  26. Diederichs  K. Structural superposition of proteins with unknown alignment and detection of topological similarity using a six-dimensional search algorithm. Proteins. 1995;23:18795. DOIPubMedGoogle Scholar
  27. DeLano  WL. The PyMOL user's manual. San Carlos (CA): DeLano Scientific, USA; 2002. Available from http://www.pymol.org

Main Article

Page created: October 26, 2024
Page updated: October 26, 2024
Page reviewed: October 26, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external