Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 8—August 2005
Research

Modeling Control Strategies of Respiratory Pathogens

Babak Pourbohloul*1Comments to Author , Lauren Ancel Meyers†‡1, Danuta M. Skowronski*, Mel Krajden*, David M. Patrick*, and Robert C. Brunham*
Author affiliations: *University of British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada; †University of Texas at Austin, Austin, Texas, USA; ‡Santa Fe Institute, Santa Fe, New Mexico, USA

Main Article

Figure A6

Transmission probability distribution. The probability of transmission of respiratory pathogens depends on the amount of shedding, distance, duration of contact, and environmental factors such as temperature and humidity. Reports on SARS epidemiology suggest a bimodal distribution of transmission probabilities: close contacts in hospitals may have had high probabilities of transmission while typical contacts in schools, workplaces, and shopping malls may have had low probabilities of transmissio

Figure A6. . Transmission probability distribution. The probability of transmission of respiratory pathogens depends on the amount of shedding, distance, duration of contact, and environmental factors such as temperature and humidity. Reports on SARS epidemiology suggest a bimodal distribution of transmission probabilities: close contacts in hospitals may have had high probabilities of transmission while typical contacts in schools, workplaces, and shopping malls may have had low probabilities of transmission (2,3). We assumed this distribution of per day transmission probabilities across the entire network in our analysis. The first peak corresponds to household contacts, while the second peak (with higher probability of transmission) corresponds to all contacts occurring in healthcare settings. Note that this distribution includes the per day probabilities of transmission for all possible contacts in the network, and thus has a smaller mean than the estimates reported for SARS in which the probability of transmission was estimated for particular settings (2,3).

Main Article

References
  1. Poutanen  SM, Low  DE, Henry  B, Finkelstein  S, Rose  D, Green  K, Identification of severe acute respiratory syndrome in Canada. N Engl J Med. 2003;348:19952005. DOIPubMedGoogle Scholar
  2. Brown  H. WHO confirms human-to-human avian flu transmission. Lancet. 2004;363:462. DOIPubMedGoogle Scholar
  3. Reed  KD, Melski  JW, Graham  MB, Regnery  RL, Sotir  MJ, Wegner  MV, The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med. 2004;350:34250. DOIPubMedGoogle Scholar
  4. Nash  D, Mostashari  F, Fine  A, Miller  J, O'Leary  D, Murray  K, The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med. 2001;344:180714. DOIPubMedGoogle Scholar
  5. Normile  D. Infectious diseases. First U.S. case of mad cow sharpens debate over testing. Science. 2004;303:1567. DOIPubMedGoogle Scholar
  6. Swartz  MN. Recognition and management of anthrax—an update. N Engl J Med. 2001;345:16216. DOIPubMedGoogle Scholar
  7. Charatan  F. Widespread flu in United States exposes shortage of vaccine. BMJ. 2004;328-a:8.
  8. Anderson  RM, May  RM. Infectious diseases of humans: dynamics and control. Oxford (UK): Oxford University Press; 1991.
  9. Ferguson  NM, Donnelly  CA, Anderson  RM. The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science. 2001;292:115560. DOIPubMedGoogle Scholar
  10. Pourbohloul  B, Rekart  ML, Brunham  RC. Impact of mass treatment on syphilis transmission: a mathematical modeling approach. Sex Transm Dis. 2003;30:297305. DOIPubMedGoogle Scholar
  11. Kaplan  EH, Craft  DL, Wein  LM. Emergency response to a smallpox attack: the case of mass vaccination. Proc Natl Acad Sci U S A. 2002;99:1093540. DOIPubMedGoogle Scholar
  12. Meyers  LA, Newman  ME, Martin  M, Schrag  S. Applying network theory to epidemics: control measures for Mycoplasma pneumoniae outbreaks. Emerg Infect Dis. 2003;9:20410.PubMedGoogle Scholar
  13. Newman  MEJ. Spread of epidemic disease on networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66:016128. DOIPubMedGoogle Scholar
  14. Longini  IM. A mathematical model for predicting the geographic spread of new infectious agents. Math Biosci. 1988;90:367. DOIGoogle Scholar
  15. Halloran  ME, Longini  IM Jr, Nizam  A, Yang  Y. Containing bioterrorist smallpox. Science. 2002;298:142832. DOIPubMedGoogle Scholar
  16. Sattenspiel  L, Simon  CP. The spread and persistence of infectious diseases in structured populations. Math Biosci. 1988;90:341. DOIGoogle Scholar
  17. Morris  M. Data driven network models for the spread of disease. In: Mollison D, editor. Epidemic models: their structure and relation to data. Cambridge (UK): Cambridge University Press; 1995. p. 302–22.
  18. Ball  F, Mollison  D, Scalia-Tomba  G. Epidemics with two levels of mixing. Ann Appl Probab. 1997;7:46. DOIGoogle Scholar
  19. Diekmann  O, de Jong  MCM, Metz  JAJ. A deterministic epidemic model taking account of repeated contacts between the same individuals. J Appl Probab. 1998;35:44862. DOIGoogle Scholar
  20. Lloyd  AL, May  RM. Epidemiology. How viruses spread among computers and people. Science. 2001;292:1316. DOIPubMedGoogle Scholar
  21. Keeling  MJ, Woolhouse  MEJ, May  RM, Davies  G, Grenfell  BT. Modeling vaccination strategies against foot-and-mouth disease. Nature. 2003;421:13642. DOIPubMedGoogle Scholar
  22. Newman  MEJ. The structure and function of complex networks. SIAM Rev. 2003;45:167256. DOIGoogle Scholar
  23. Statistics Canada [homepage on the Internet]. [cited 2004 May 6]. Available from http://www.statcan.ca
  24. BC Statistics [homepage on the Internet]. [cited 2004 May 6]. Available from http://www.bcstats.gov.bc.ca
  25. Centre for Health Services and Policy Research at University of British Columbia [homepage on the Internet]. [cited May 6]. Available from http://www.chspr.ubc.ca
  26. City of Vancouver [homepage on the Internet]. [cited 2004 May 6]. Available from http://www.city.vancouver.bc.ca
  27. Vancouver Public School Board [homepage on the Internet]. [cited 2004 May 6]. Available from http://www.vsb.bc.ca/default.htm
  28. Diekmann  O, Heesterbeek  JAP. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. New York: John Wiley & Sons; 2000.
  29. Xu  R-H, He  J-F, Evans  MR, Peng  G-W, Field  HE, Yu  D-W, Epidemiologic clues to SARS origin in China. Emerg Infect Dis. 2004;10:10307.PubMedGoogle Scholar
  30. Yu  IT, Li  Y, Wong  TW, Tam  W, Chan  AT, Lee  JH, Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004;350:17319. DOIPubMedGoogle Scholar
  31. Meyers  LA, Pourbohloul  B, Newman  ME, Skowronski  DM, Brunham  RC. Network theory and SARS: predicting outbreak diversity. J Theor Biol. 2005;232:7181. DOIPubMedGoogle Scholar
  32. Hethcote  HW. The mathematics of infectious diseases. SIAM Rev. 2000;42:599653. DOIGoogle Scholar
  33. Bozzette  SA, Boer  R, Bhatnagar  V, Brower  JL, Keeler  EB. A model for a smallpox-vaccination policy. N Engl J Med. 2003;348:41625. DOIPubMedGoogle Scholar
  34. Chowell  G, Fenimore  PW, Castillo-Garsow  MA, Castillo-Chavez  C. SARS outbreaks in Ontario, Hong Kong, and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol. 2003;224:18. DOIPubMedGoogle Scholar
  35. Riley  S, Fraser  C, Donnelly  CA, Ghani  AC, Abu-Raddad  LJ, Hedley  AJ, Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003;300:19616. DOIPubMedGoogle Scholar
  36. Lipsitch  M, Cohen  T, Cooper  B, Robins  JM, Ma  S, James  L, Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300:196670. DOIPubMedGoogle Scholar
  37. Meyers  LA, Pourbohloul  B, Newman  MEJ, Skowronski  DM, Brunham  RC. Contact networks and the spread of SARS. J Theor Biol. 2005;232:7181. DOIPubMedGoogle Scholar
  38. Peiris  JS, Yuen  KY, Osterhaus  AD, Stohr  K. The severe acute respiratory syndrome. N Engl J Med. 2003;349:243141. DOIPubMedGoogle Scholar
  39. Donnelly  CA, Fisher  MC, Fraser  C, Ghani  AC, Riley  S, Ferguson  NM, Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infect Dis. 2004;4:67283. DOIPubMedGoogle Scholar
  40. Newman  MEJ. Spread of epidemic disease on networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66:016128. DOIPubMedGoogle Scholar
  41. Meyers  LA, Newman  MEJ, Pourbohloul  B. Predicting epidemics on semi-directed networks. In review. Available from http://www.santafe.edu/research/publications/wplist/2004 (paper #04-12-037).

Main Article

1These authors contributed equally to this work.

2For the purposes of this manuscript, "airborne" refers to respiratory pathogens that are spread through respiratory secretions and can be either airborne, such as tuberculosis, or dropletborne, such as SARS.

Page created: April 23, 2012
Page updated: April 23, 2012
Page reviewed: April 23, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external