Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 5—May 2006

Extended-spectrum β-Lactamase–producing Enterobacteriaceae, Central African Republic

On This Page
Article Metrics
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: Since the early 1980s, extended-spectrum β-lactamases (ESBLs) have been the largest source of resistance to broad-spectrum oxyimino-cephalosporins among Enterobacteriaceae (1). Molecular analysis techniques suggest that many ESBLs are derived from mutations in TEM-1, TEM-2, and SHV-1 β-lactamases and that these ESBLs can hydrolyze the extended-spectrum cephalosporins (particularly ceftazidime) and aztreonam (1). Members of a new group of ESBLs have been recently identified (1). Among them, CTX-M–type ESBLs are rapidly expanding and are derived from chromosomal class A β-lactamases of Kluyvera spp (1,2). The CTX-M enzymes are not related to TEM or SHV enzymes, as they share only 40% identity with these ESBLs (2).These ESBLS are usually characterized by a higher level of resistance to cefotaxime than ceftazidime, except for CTX-M-19 (2). Most organisms that harbor ESBLs are also resistant to other classes of antimicrobial drugs, such as aminoglycosides, fluoroquinolones, chloramphenicol, and tetracyclines (1,2).

Reports concerning the existence of ESBL-producing Enterobacteriaceae in sub-Saharan Africa are scarce. We therefore conducted a study in the Central African Republic to determine the frequency of ESBLs in Enterobacteriaceae isolated at the Institut Pasteur de Bangui and to characterize their blaTEM, blaSHV, and blaCTX-M genes.

From January 2003 to March 2005, all Enterobacteriaceae isolated from human specimens at the Institut Pasteur de Bangui were screened for ESBLs. Antimicrobial drug susceptibility was determined by using the disk diffusion method (Bio-Rad, Marnes la Coquette, France) on Mueller-Hinton agar (MHA) and interpreted according to the recommendations of the Comité de l'Antibiogramme de la Société Française de Microbiologie (CA-SFM) ( ESBL-producing Enterobacteriaceae were selected by the following criteria: susceptibility to cefoxitin; decreased susceptibility to cefotaxime (30 μg), ceftazidime (30 μg), or cefepime (30 μg) (zone diameter <21 mm); and enhanced susceptibility in the presence of clavulanic acid by the double disk synergy test (3). For suspected ESBLs, the MICs of broad-spectrum cephalosporins were determined by using the agar dilution method.

We screened 450 Enterobacteriaceae for ESBLs during the study. We isolated and identified 17 (4%) ESBL-producing strains (Table). These strains were associated with urinary tract infection, pneumonia in an AIDS patient, wound infection, vaginal or intestinal colonization, and ear infection. We found that 11 isolates were more resistant to cefotaxime (MIC >256 μg/mL) than to ceftazidime (MIC <128 μg/mL), which suggests CTX-M–type enzymes. Enterobacteriaceae strains that harbor ESBLs were frequently associated with resistance to aminoglycosides and ciprofloxacin (Table).

The conjugal transfer of the resistance determinants was carried out in trypticase soy (TS) broth with rifampin-resistant Escherichia coli J53-2 as the recipient. Mating broths were incubated at 37°C for 18 h. Transconjugants were selected on MHA plates containing rifampin (250 μg/mL) and cefotaxime (2.5 μg/mL). If conjugal transfer failed, plasmid DNA was extracted from donors with the Qiagen Plasmid Mini Kit (Qiagen, Courtaboeuf, France); 20 μL of E. coli DH10B cells were transformed with plasmid DNA by electroporation according to the manufacturer's instructions (Bio-Rad). Transformants were incubated for 1.5 h at 37°C in TS broth and then plated on MHA plates supplemented with 2.5 μg/mL cefotaxime.

Plasmid-encoded β-lactamase genes were detected on clinical isolates and their tranconjugants or transformants by polymerase chain reaction with oligonucleotide primer sets specific for the blaTEM, blaSHV, and blaCTX-M genes (4). PCR assays were performed on total DNA extracted by using the commercial Qiagen DNA Mini Kit. The 3 β-lactamase genes were detected in different clinical isolates (Table). PCR results showed that the strains were harboring >2 different types of β-lactamases.

Plasmid-encoded β-lactamase genes were characterized by direct DNA sequencing with PCR primers. The nucleotide sequences were analyzed by the BLASTN (nucleotide basic local alignment search tool) program. For ESBLs, the gene types (SHV-2a, SHV-12, CTX-M-15, and CTX-M-3) were identified from different Enterobacteriaceae (Table). Only 1 strain (Enterobacter aerogenes) harbored 2 different ESBLs (CTX-M-3 and SHV-12). We identified TEM-1 and CTX-M15 enzymes, which are the most prevalent β-lactamases detected in our strains.

ESBL-producing Enterobacteriaceae have been previously described in South Africa (5), Kenya (6), Senegal (7), Cameroon (8), Tanzania (9), and Nigeria (10). As described in these countries, we found that CTX-M-15, SHV-2a, and SHV-12 were the most prevalent enzymes. CTX-M-15, the most recently described ESBL type, is particularly common in Bangui and seems to be closely related to E. coli, as was previously observed in Tanzania (9). This finding is also the first report of CTX-M-3 in sub-Saharan Africa.

Multidrug resistance profiles involving non–β-lactam antimicrobial drugs coselected these ESBL-producing isolates. We suggest that the misuse of antimicrobial drugs in the Central African Republic and the migratory flux of regional populations could result in emergence and selection of these ESBL phenotypes in the community. We could not establish a relationship between the different strains isolated in hospitalized and ambulatory patients. Because of the implications for treating such infections, particularly in developing countries, the spread of ESBL-producing Enterobacteriaceae merits close surveillance in the Central African Republic.



This work was financed by grants from Institut Pasteur de Bangui, Faculté de Médecine Pierre et Marie Curie, Université Pierre et Marie Curie (Paris VI), and the European Community, contract LSHM-CT 2003-503335.


Thierry Frank*, Guillaume Arlet†‡Comments to Author , Valerie Gautier†, Antoine Talarmin*, and Raymond Bercion*
Author affiliations: *Institut Pasteur de Bangui, Bangui, Central African Republic; †Université Pierre et Marie Curie (Paris VI), Paris, France; ‡Hôpital Tenon AP-HP, Paris, France



  1. Paterson  DL, Bonomo  RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005;18:65786. DOIPubMedGoogle Scholar
  2. Bonnet  R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48:114. DOIPubMedGoogle Scholar
  3. Jarlier  V, Nicolas  MH, Fournier  G, Phillipon  A. Extended broad–spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988;10:86778. DOIPubMedGoogle Scholar
  4. Eckert  C, Gautier  V, Saladin-Allard  M, Hidri  N, Verdet  C, Ould-Hocine  Z, Dissemination of CTX-M–type β-lactamases among clinical isolates of Enterobacteriaceae in Paris, France. Antimicrob Agents Chemother. 2004;48:124954. DOIPubMedGoogle Scholar
  5. Pitout  JDD, Thomson  KS, Hanson  ND, Ehrhardt  AF, Moland  ES, Sanders  CC. β-lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob Agents Chemother. 1998;42:13504.PubMedGoogle Scholar
  6. Kariuki  S, Corkill  JE, Revathi  G, Musoke  R, Hart  CA. Molecular characterization of a novel plasmid-encoded cefotaximase (CTX-M-12) found in clinical isolates from Kenya. Antimicrob Agents Chemother. 2001;45:21413. DOIPubMedGoogle Scholar
  7. Weill  FX, Perrier-Gros-Claude  JD, Demartin  M, Coignard  S, Grimont  P. Characterization of extended–spectrum β-lactamase (CTX-M-15) producing strains of Salmonella enterica isolated in France and Senegal. FEMS Microbiol Lett. 2004;238:3538.PubMedGoogle Scholar
  8. Gangoue-Pieboji  J, Miriagou  V, Vourli  S, Tzelepi  E, Ngassam  P, Tzouvelekis  LS. Emergence of CTX-M-15-producing enterobacteria in Cameroon and characterization of a blaCTX-M-15–carrying element. Antimicrob Agents Chemother. 2005;49:4413. DOIPubMedGoogle Scholar
  9. Blomberg  B, Jureen  R, Manji  KP, Tamim  BS, Mwakagile  DSM, Urassa  WK, High rate of fatal cases of pediatric septicemia caused by gram-negative bacteria with extended-spectrum beta-lactamases in Dar es Salaam, Tanzania. J Clin Microbiol. 2005;43:7459. DOIPubMedGoogle Scholar
  10. Soge  OO, Queenan  AM, Ojo  KK, Adeniyi  BA, Roberts  MC. CTX-M-15 extended-spectrum β-lactamase from Nigerian Klebsiella pneumoniae. J Antimicrob Chemother. 2006;57:2430. Epub 2005 Nov 30. DOIPubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid1205.050951

Related Links


Table of Contents – Volume 12, Number 5—May 2006

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Guillaume Arlet, Service de Bactériologie-Hygiène, Hôpital Tenon, AP-HP, rue de la Chine, 75970 Paris CEDEX 20, France; fax: 33-1-56-01-61-08

Send To

10000 character(s) remaining.


Page created: January 12, 2012
Page updated: January 12, 2012
Page reviewed: January 12, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.