Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 13, Number 7—July 2007
Dispatch

Virus Detection and Monitoring of Viral Load in Crimean-Congo Hemorrhagic Fever Virus Patients

Roman Wölfel*†, Janusz T. Paweska‡, Nadine Petersen†, Antoinette A. Grobbelaar‡, Patricia A. Leman‡, Roger Hewson§, Marie-Claude Georges-Courbot¶, Anna Papa#, Stephan Günther†, and Sung Sup Park†Comments to Author 
Author affiliations: *Bundeswehr Institute of Microbiology, Munich, Germany; †Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; ‡National Institute for Communicable Diseases, Sandringham, South Africa; §Health Protection Agency, Porton Down, Salisbury, United Kingdom; ¶Institute Pasteur, Lyon, France; #Aristotle University of Thessaloniki, Thessaloniki, Greece;

Main Article

Figure 1

Global distribution and phylogenetic relationships of Crimean-Congo hemorrhagic fever virus (CCHFV) strains selected for design and validation of the assay. All strains except those marked with asterisks were tested. Phylogenetic analysis was based on available 450-bp sequences (from the National Center for Biotechnology Information) of CCHFV small (S-) segment and generated by the neighbor-joining method with TreeCon for Windows (version 1.3b; Yves van de Peer, University Konstanz, Germany). Nomenclature of CCHFV clades is based on (7). Note that group VII can be resolved only when analyzing the M-segment, not the s-segment as shown here. *These CCHFV strains are shown for reference, but they were not available for testing. **This strain was not available; however, strain Kosovo, which is almost identical, was tested instead. ***Strain AP92 has also not been available for testing. It was isolated from a Rhipicephalus bursa tick and has never been associated with human disease.

Figure 1. Global distribution and phylogenetic relationships of Crimean-Congo hemorrhagic fever virus (CCHFV) strains selected for design and validation of the assay. All strains except those marked with asterisks were tested. Phylogenetic analysis was based on available 450-bp sequences (from the National Center for Biotechnology Information) of CCHFV small (S-) segment and generated by the neighbor-joining method with TreeCon for Windows (version 1.3b; Yves van de Peer, University Konstanz, Germany). Nomenclature of CCHFV clades is based on (7). Note that group VII can be resolved only when analyzing the M-segment, not the s-segment as shown here. *These CCHFV strains are shown for reference, but they were not available for testing. **This strain was not available; however, strain Kosovo, which is almost identical, was tested instead. ***Strain AP92 has also not been available for testing. It was isolated from a Rhipicephalus bursa tick and has never been associated with human disease.

Main Article

References
  1. Hoogstraal  H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol. 1979;15:307417.PubMedGoogle Scholar
  2. Whitehouse  CA. Crimean-Congo hemorrhagic fever. Antiviral Res. 2004;64:14560.PubMedGoogle Scholar
  3. Burt  FJ, Leman  PA, Smith  JF, Swanepoel  R. The use of a reverse transcription–polymerase chain reaction for the detection of viral nucleic acid in the diagnosis of Crimean-Congo haemorrhagic fever. J Virol Methods. 1998;70:12937. DOIPubMedGoogle Scholar
  4. Duh  D, Saksida  A, Petrovec  M, Dedushaj  I. vsic-Zupanc T. Novel one-step real-time RT-PCR assay for rapid and specific diagnosis of Crimean-Congo hemorrhagic fever encountered in the Balkans. J Virol Methods. 2006;133:1759. DOIPubMedGoogle Scholar
  5. Schwarz  TF, Nsanze  H, Longson  M, Nitschko  H, Gilch  S, Shurie  H, Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean-Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996;55:1906.PubMedGoogle Scholar
  6. Yapar  M, Aydogan  H, Pahsa  A, Besirbellioglu  BA, Bodur  H, Basustaoglu  AC, Rapid and quantitative detection of Crimean-Congo hemorrhagic fever virus by one-step real-time reverse transcriptase-–PCR. Jpn J Infect Dis. 2005;58:35862.PubMedGoogle Scholar
  7. Deyde  VM, Khristova  ML, Rollin  PE, Ksiazek  TG, Nichol  ST. Crimean-Congo hemorrhagic fever virus genomics and global diversity. J Virol. 2006;80:883442. DOIPubMedGoogle Scholar
  8. Peyret  N, Seneviratne  PA, Allawi  HT, SantaLucia  J Jr. Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry. 1999;38:346877. DOIPubMedGoogle Scholar
  9. Hewson  R, Chamberlain  J, Mioulet  V, Lloyd  G, Jamil  B, Hasan  R, Crimean-Congo haemorrhagic fever virus: sequence analysis of the small RNA segments from a collection of viruses world wide. Virus Res. 2004;102:1859. DOIPubMedGoogle Scholar
  10. Drosten  C, Gottig  S, Schilling  S, Asper  M, Panning  M, Schmitz  H, Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40:232330. DOIPubMedGoogle Scholar
  11. Fink  H, Hund  G. Probit analysis with programmed computers [in German]. Arzneimittelforschung. 1965;15:62430.PubMedGoogle Scholar
  12. Ergonul  O, Celikbas  A, Dokuzoguz  B, Eren  S, Baykam  N, Esener  H. Characteristics of patients with Crimean-Congo hemorrhagic fever in a recent outbreak in Turkey and impact of oral ribavirin therapy. Clin Infect Dis. 2004;39:2847. DOIPubMedGoogle Scholar
  13. Ergonul  O, Celikbas  A, Baykam  N, Eren  S, Dokuzoguz  B. Analysis of risk-factors among patients with Crimean-Congo haemorrhagic fever virus infection: severity criteria revisited. Clin Microbiol Infect. 2006;12:5514. DOIPubMedGoogle Scholar

Main Article

Page created: June 21, 2010
Page updated: June 21, 2010
Page reviewed: June 21, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external