Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 10—October 2012

Methicillin-Resistant Staphylococcus aureus Sequence Type 239-III, Ohio, USA, 2007–20091

Shu-Hua WangComments to Author , Yosef Khan, Lisa Hines, José R. Mediavilla, Liangfen Zhang, Liang Chen, Armando Hoet, Tammy Bannerman, Preeti Pancholi, D. Ashley Robinson, Barry N. Kreiswirth, Kurt B. Stevenson, and for the Prevention Epicenter Program of the Centers for Disease Control and Prevention
Author affiliations: The Ohio State University Wexner Medical Center, Columbus, Ohio, USA (S.H. Wang, Y. Khan, L. Hines, A. Hoet, P. Pancholi, K.B. Stevenson); University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA (J.R. Mediavilla, L. Chen, B.N. Kreiswirth); University of Mississippi Medical Center, Jackson, Mississippi, USA (L. Zhang, D.A. Robinson); and The Ohio Department of Health Laboratories, Reynoldsburg, Ohio, USA (T. Bannerman)

Main Article

Figure 3

Single-nucleotide polymorphism (SNP) haplotype map showing position of methicillin-resistant Staphylococcus aureus sequence type 239-III (MRSA ST239-III) isolates, Ohio, USA, 2007–2009, within the global population structure of the MRSA ST239-III clonal group. Circles indicate distinct haplotypes, as defined by using a panel of 43 SNPs (9). Sizes of circles indicate relative frequency of different haplotypes. Arrows indicate haplotype 5 (H5), which includes the Brazilian clone, and haplotype 9 (

Figure 3. . . Single-nucleotide polymorphism (SNP) haplotype map showing position of methicillin-resistant Staphylococcus aureus sequence type 239-III (MRSA ST239-III) isolates, Ohio, USA, 2007–2009, within the global population structure of the MRSA ST239-III clonal group. Circles indicate distinct haplotypes, as defined by using a panel of 43 SNPs (9). Sizes of circles indicate relative frequency of different haplotypes. Arrows indicate haplotype 5 (H5), which includes the Brazilian clone, and haplotype 9 (H9), which includes the 22 MRSA ST239-III isolates from Ohio. Relationships between haplotypes were determined by using maximum-parsimony analysis (9).

Main Article

  1. Lowy  FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:52032. DOIPubMedGoogle Scholar
  2. Cosgrove  SE, Sakoulas  G, Perencevich  EN, Schwaber  MJ, Karchmer  AW, Carmeli  Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36:539. DOIPubMedGoogle Scholar
  3. Melzer  M, Eykyn  SJ, Gransden  WR, Chinn  S. Is methicillin-resistant Staphylococcus aureus more virulent than methicillin-susceptible S. aureus? A comparative cohort study of British patients with nosocomial infection and bacteremia. Clin Infect Dis. 2003;37:145360. DOIPubMedGoogle Scholar
  4. McDougal  LK, Steward  CD, Killgore  GE, Chaitram  JM, McAllister  SK, Tenover  FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol. 2003;41:511320. DOIPubMedGoogle Scholar
  5. Feil  EJ, Nickerson  EK, Chantratita  N, Wuthiekanum  V, Srisomang  P, Cousind  R, Rapid detection of the pandemic methicillin-resistant Staphylococcus aureus clone ST 239, a dominant strain in Asian hospitals. J Clin Microbiol. 2008;46:15202. DOIPubMedGoogle Scholar
  6. Holden  MT, Lindsay  JA, Corton  C, Quail  MA, Cockfield  JD, Pathak  S, Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J Bacteriol. 2010;192:88892. DOIPubMedGoogle Scholar
  7. Aires de Sousa  M, Conceição  T, Simas  C, de Lencastre  H. Comparison of genetic backgrounds of methicillin-resistant and -susceptible Staphylococcus aureus isolates from Portuguese hospitals and the community. J Clin Microbiol. 2005;43:51507. DOIPubMedGoogle Scholar
  8. Monecke  S, Coombs  G, Shore  AC, Coleman  DC, Akpaka  P, Borg  M, A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS ONE. 2011;6:e17936. DOIPubMedGoogle Scholar
  9. Smyth  DS, McDougal  LK, Gran  FW, Manoharan  A, Enright  MC, Song  JH, Population structure of a hybrid clonal group of methicillin-resistant Staphylococcus aureus, ST239-MRSA-III. PLoS ONE. 2010;5:e8582. DOIPubMedGoogle Scholar
  10. de Lencastre  H, Severina  EP, Roberts  RB, Kreiswirth  BN, Tomasz  A. Testing the efficacy of a molecular surveillance network: methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF) genotypes in six hospitals in the metropolitan New York City area. The BARG Initiative Pilot Study Group. Bacterial Antibiotic Resistance Group. Microb Drug Resist. 1996;2:34351. DOIPubMedGoogle Scholar
  11. Klevens  RM, Morrison  MA, Nadle  J, Petit  S, Gershman  K, Ray  S, Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298:176371. DOIPubMedGoogle Scholar
  12. Chung  M, Dickinson  G, de Lencastre  H, Tomasz  A. International clones of methicillin-resistant Staphylococcus aureus in two hospitals in Miami, Florida. J Clin Microbiol. 2004;42:5427. DOIPubMedGoogle Scholar
  13. Tenover  FC, Tickler  IA, Goering  RV, Kreiswirth  BN, Mediavilla  JR, Persing  DH. Characterization of nasal and blood culture isolates of methicillin-resistant Staphylococcus aureus from patients in United States hospitals. Antimicrob Agents Chemother. 2012;56:132430. DOIPubMedGoogle Scholar
  14. Mermel  LA, Eells  SJ, Acharya  MK, Cartony  JM, Dacus  D, Fadem  S, Quantitative analysis and molecular fingerprinting of methicillin-resistant Staphylococcus aureus nasal colonization in different patient populations: a prospective, multicenter study. Infect Control Hosp Epidemiol. 2010;31:5927. DOIPubMedGoogle Scholar
  15. Clincal and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 19th informational supplement, vol 29, no. 3. M100–S19. Wayne (PA): The Institute; 2009.
  16. Healy  M, Huong  J, Bittner  T, Lising  M, Frye  S, Raza  S, Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol. 2005;43:199207. DOIPubMedGoogle Scholar
  17. Tenover  FC, Arbeit  RD, Goering  RV, Mickelsen  PA, Murray  BE, Persing  DH, Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:22339.PubMedGoogle Scholar
  18. Shopsin  B, Gomez  M, Montgomery  SO, Smith  DH, Waddington  M, Dodge  DE, Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol. 1999;37:355663.PubMedGoogle Scholar
  19. Mathema  B, Mediavilla  J, Kreiswirth  BN. Sequence analysis of the variable number tandem repeat in Staphylococcus aureus protein A gene: spa typing. Methods Mol Biol. 2008;431:285305.PubMedGoogle Scholar
  20. Chen  L, Mediavilla  JR, Oliveira  DC, Willey  BM, de Lencastre  H, Kreiswirth  BN. Multiplex real-time PCR for rapid staphylococcal cassette chromosome mec typing. J Clin Microbiol. 2009;47:3692706. DOIPubMedGoogle Scholar
  21. Goering  RV, Morrison  D, Al-Doori  Z, Edwards  GF, Gemmell  CG. Usefulness of mec-associated direct repeat unit (dru) typing in the epidemiological analysis of highly clonal methicillin-resistant Staphylococcus aureus in Scotland. Clin Microbiol Infect. 2008;14:9649. DOIPubMedGoogle Scholar
  22. Enright  MC, Day  NP, Davies  CE, Peacock  SJ, Spratt  BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38:100815.PubMedGoogle Scholar
  23. Saïd-Salim  B, Mathema  B, Braughton  K, Davis  S, Sinsimer  D, Eisner  W, Differential distribution and expression of Panton-Valentine leucocidin among community-acquired methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol. 2005;43:33739. DOIPubMedGoogle Scholar
  24. Johnson  WM, Tyler  SD, Ewan  EP, Ashton  FE, Pollard  DR, Rozee  KR. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J Clin Microbiol. 1991;29:42630.PubMedGoogle Scholar
  25. Diep  BA, Stone  GG, Basuino  L, Graber  CJ, Miller  A, des Etages  SA, The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis. 2008;197:152330. DOIPubMedGoogle Scholar
  26. Anthony  RM, Connor  AM, Power  EG, French  GL. Use of the polymerase chain reaction for rapid detection of high-level mupirocin resistance in staphylococci. Eur J Clin Microbiol Infect Dis. 1999;18:304. DOIPubMedGoogle Scholar
  27. Harris  SR, Feil  EJ, Holden  MT, Quail  MA, Nickerson  EK, Chantratita  N, Evolution of MRSA during hospital transmission and intercontinental spread. Science. 2010;327:46974. DOIPubMedGoogle Scholar
  28. Amaral  MM, Coelho  LR, Flores  RP, Souza  RR, Silva-Carvalho  MC, Teixeira  LA, The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis. 2005;192:80110. DOIPubMedGoogle Scholar
  29. Edgeworth  JD, Yadegarfar  G, Pathak  S, Batra  R, Cockfield  JD, Wyncoll  D, An outbreak in an intensive care unit of a strain of methicillin-resistant Staphylococcus aureus sequence type 239 associated with an increased rate of vascular access device-related bacteremia. Clin Infect Dis. 2007;44:493501. DOIPubMedGoogle Scholar
  30. Cho  DT, Cha  HY, Chang  HH, Kim  SW, Chung  JM, Kim  J, Risk factors for specific methicillin-resistant Staphylococcus aureus clones in a Korean hospital. J Antimicrob Chemother. 2006;57:11227. DOIPubMedGoogle Scholar
  31. Li  DZ, Chen  YS, Yang  JP, Zhang  W, Hu  CP, Li  JS, Preliminary molecular epidemiology of the Staphylococcus aureus in lower respiratory tract infections: a multicenter study in China. Chin Med J (Engl). 2011;124:68792.PubMedGoogle Scholar
  32. Smyth  DS, Wong  A, Robinson  DA. Cross-species spread of SCCmec IV subtypes in staphylococci. Infect Genet Evol. 2011;11:44653. DOIPubMedGoogle Scholar
  33. Van Bellum  A, Struelens  M, de Visser  A, Verbrugh  H, Tibayrenc  M. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev. 2001;14:54760. DOIPubMedGoogle Scholar
  34. Olive  DM, Bean  P. Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol. 1999;37:16619.PubMedGoogle Scholar
  35. Tumin  R, Wang  SH, Pancholi  P, Khan  Y, Hines  L, Stevenson  K. Relationship of social and medical factors to other antimicrobial resistance among methicillin-resistant Staphylococcus aureus strains. In: Abstracts of the 139th American Public Health Association Annual Meeting; Washington, DC, Oct 29–Nov 2, 2011. Washington (DC): American Public Health Association; 2011. Abstract 246417.

Main Article

1Presented in part at the 48th Annual Meeting of the Infectious Diseases Society of America, Vancouver, British Columbia, Canada, October 21–24, 2010.

Page created: September 19, 2012
Page updated: September 19, 2012
Page reviewed: September 19, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.