Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 12—December 2012
Dispatch

High Diversity of RNA Viruses in Rodents, Ethiopia

Yonas Meheretu1, Dagmar Čížková1, Jana Těšíková, Kiros Welegerima, Zewdneh Tomas, Dawit Kidane, Kokob Girmay, Jonas Schmidt-Chanasit, Josef Bryja, Stephan Günther, Anna Bryjová, Herwig Leirs, and Joëlle Goüy de BellocqComments to Author 
Author affiliations: Author affiliations: Academy of Sciences of the Czech Republic Institute of Vertebrate Biology, Brno, Czech Republic (Y. Meheretu, D. Čížková, J. Těšíková, J. Bryja, A. Bryjová, J. Goüy de Bellocq); Mekelle University, Mekelle, Ethiopia (Y. Meheretu, K. Welegerima, Z. Tomas, D. Kidane, K. Girmay); University of Antwerp, Antwerp, Belgium (Y. Meheretu, H. Leirs, J. Goüy de Bellocq); Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany (J. Schmidt-Chanasit, S. Günther)

Main Article

Figure 2

Maximum-likelihood tree of hantaviruses showing the position of the 4 sequences of Tigray hantavirus (boldface; GenBank accession nos. JQ956484–JQ956487) found in kidney samples of Ethiopian white-footed mice (Stenocephalemys albipes). The tree was constructed on the basis of analysis of partial sequences of the RNA polymerase gene; phylogeny was estimated by using the maximum-likelihood method with the general time reversible + I + Γ (4 rate categories) substitution model to account for rate he

Figure 2. . Maximum-likelihood tree of hantaviruses showing the position of the 4 sequences of Tigray hantavirus (boldface; GenBank accession nos. JQ956484–JQ956487) found in kidney samples of Ethiopian white-footed mice (Stenocephalemys albipes). The tree was constructed on the basis of analysis of partial sequences of the RNA polymerase gene; phylogeny was estimated by using the maximum-likelihood method with the general time reversible + I + Γ (4 rate categories) substitution model to account for rate heterogeneity across sites as implemented in the PhyML program (8). Numbers represent percentage bootstrap support (1,000 replicates). Underlining indicates hantaviruses found in Africa. Scale bar indicates nucleotide substitutions per site. GenBank accession numbers of the virus strains: AB620030, NC_003468, EU929078, EF619961, JF276228, EF540771, EF543525, EF397003, NC_005235, AB620033, JN037851, FJ170809, FJ170812, AB620108, EF641807, FJ593501, GQ306150, AF005729, EU788002, AB620102, FJ593498, FJ593497, EF646763, NC_005225, GU566021, FJ809772, HM015221, AJ410618, DQ268652, JQ082305, EU424336, NC_005238, AM998806, NC_005217, DQ056292, EF050454, JN116261, EU001330, AJ005637, JQ287716.

Main Article

References
  1. Woolhouse  M, Gaunt  E. Ecological origins of novel human pathogens. Crit Rev Microbiol. 2007;33:23142. DOIPubMedGoogle Scholar
  2. Weiss  S, Witkowski  PT, Auste  B, Nowak  K, Weber  N, Fahr  J, Hantavirus in bat, Sierra Leone. Emerg Infect Dis. 2012;18:15961. DOIPubMedGoogle Scholar
  3. Sumibcay  L, Kadjo  B, Gu  SH, Kang  HJ, Lim  B, Cook  J, Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d’Ivoire. Virol J. 2012;9:34. DOIPubMedGoogle Scholar
  4. Gonzalez  JP, McCormick  JB, Baudon  D, Gautun  JP, Meunier  DY, Dournon  E, Serological evidence for Hantaan-related virus in Africa. Lancet. 1984;324:10367. DOIPubMedGoogle Scholar
  5. Klempa  B, Koivogui  L, Sylla  O, Koulemou  K, Auste  B, Kruger  DH, Serological evidence of human hantavirus infections in Guinea, West Africa. J Infect Dis. 2010;201:10314. DOIPubMedGoogle Scholar
  6. Vieth  S, Drosten  C, Lenz  O, Vincent  M, Omilabu  S, Hass  M, RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Trans R Soc Trop Med Hyg. 2007;101:125364. DOIPubMedGoogle Scholar
  7. Klempa  B, Fichet-Calvet  E, Lecompte  E, Auste  B, Aniskin  V, Meisel  H, Hantavirus in African wood mouse, Guinea. Emerg Infect Dis. 2006;12:83840. DOIPubMedGoogle Scholar
  8. Guindon  S, Dufayard  J-F, Lefort  V, Anisimova  M, Hordijk  W, Gascuel  O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:30721. DOIPubMedGoogle Scholar
  9. Goüy de Bellocq  J, Borremans  B, Katakweba  A, Makundi  R, Baird  SJE, Becker-Ziaja  B, Sympatric occurrence of 3 arenaviruses, Tanzania. Emerg Infect Dis. 2010;16:6925. DOIPubMedGoogle Scholar
  10. Gonzalez  JP, McCormick  JB, Saluzzo  JF, Herve  JP, Georges  AJ, Johnson  KM. An arenavirus isolated from wild-caught rodents (Praomys species) in the Central African Republic. Intervirology. 1983;19:10512. DOIPubMedGoogle Scholar
  11. Coulibaly-N’Golo  D, Allali  B, Kouassi  SK, Fichet-Calvet  E, Becker-Ziaja  B, Rieger  T, Novel arenavirus sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d’Ivoire: implications for evolution of arenaviruses in Africa. PLoS ONE. 2011;6:e20893. DOIPubMedGoogle Scholar
  12. Klempa  B, Fichet-Calvet  E, Lecompte  E, Auste  B, Aniskin  V, Meisel  H, Novel hantavirus sequences in shrew, Guinea. Emerg Infect Dis. 2007;13:5202. DOIPubMedGoogle Scholar
  13. Kang  HJ, Kadjo  B, Dubey  S, Jacquet  F, Yanagihara  R. Molecular evolution of Azagny virus, a newfound hantavirus harbored by the West African pygmy shrew (Crocidura obscurior) in Côte d’Ivoire. Virol J. 2011;8:373. DOIPubMedGoogle Scholar
  14. Coulaud  X, Chouaib  E, Georges  AJ, Rollin  P, Gonzalez  JP. First human case of haemorrhagic fever with renal syndrome in the Central African Republic. Trans R Soc Trop Med Hyg. 1987;81:686. DOIPubMedGoogle Scholar
  15. Lecompte  E, Aplin  K, Denys  C, Catzeflis  F, Chades  M, Chevret  P. Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol Biol. 2008;8:199. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: November 21, 2012
Page updated: November 21, 2012
Page reviewed: November 21, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external