Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 4—April 2012

Vector Blood Meals and Chagas Disease Transmission Potential, United States

Lori StevensComments to Author , Patricia L. Dorn, Julia Hobson, Nicholas M. de la Rua, David E. Lucero, John H. Klotz, Justin O. Schmidt, and Stephen A. Klotz
Author affiliations: University of Vermont, Burlington, Vermont, USA (L. Stevens, J. Hobson, N.M. de la Rua, D.E. Lucero); Loyola University, New Orleans, Louisiana, USA (P. L. Dorn); Southwestern Biological Institute, Tucson, Arizona, USA (J.O. Schmidt); University of California, Riverside, California, USA (J.H. Klotz); University of Arizona, Tucson (S.A. Klotz)

Main Article

Table 2

Assays used to determine the source of blood meals and Trypanosoma cruzi trypanosome infection in insects collected in Arizona and California, USA*

Assay and reference Primers, 5′ → 3′ PCR cycling† Amplicon size
cytB (12) cca tcc aac atc tca gca tga tga a 95°C, 40 s; 44°C, 40 s; 72°C, 40 s 358 bp
ccc ctc aga atg att att tgt cct ca
12S (13) ccc aaa ctg gga tta gat acc c 95°C, 30 s; 57°C, 15 s; 72°C, 30 s 215 bp
gtt tgc tga aga tgg cgg ta
TCZ‡ (11) cga gct ctt gcc cac acg ggt gct 94°C, 20 s; 57°C, 10 s; 72°C, 30 s 188 bp
cct cca agc agc gga tag ttc agg

*Insects were collected by using light traps in Tucson, Arizona, and Escondido, CA, in 2007, and within the Arizona-Sonora Desert Museum, Tucson, in 2009. For the blood meal assays, cloned PCR products (pGEM-T, Promega, Madison, WI), USA were sequenced by using the BigDye v3.1 Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and analyzed by using an ABI PRISM 3730xl (Beckman Coulter, Fullerton, CA, USA).
†For all assays: initial denaturation of 95°C for 5 m; 35 cycles of PCR and final extension of 72°C for 10 m.
‡A negative control (lacking T. cruzi DNA template) was included with every assay. Samples that failed to amplify were spiked with 1 μL of T. cruzi parasites boiled in 1× PCR buffer and retested to ensure that the lack of product was not caused by PCR inhibition.

Main Article

  1. Click Lambert  R, Kolivras  KN, Resler  LM, Brewster  CC, Paulson  SL. The potential for emergence of Chagas disease in the United States. Geospat Health. 2008;2:22739.PubMedGoogle Scholar
  2. Klotz  JH, Dorn  PL, Logan  JL, Stevens  L, Pinnas  JL, Schmidt  JO, “Kissing bugs”: potential disease vectors and cause of anaphylaxis. Clin Infect Dis. 2010;50:162934. DOIPubMedGoogle Scholar
  3. Kjos  SA, Snowden  KF, Olson  JK. Biogeography and Trypanosoma cruzi infection prevalence of Chagas disease vectors in Texas, USA. Vector Borne Zoonotic Dis. 2009;9:4150. DOIPubMedGoogle Scholar
  4. Dorn  PL, Perniciaro  L, Yabsley  MJ, Roellig  DM, Balsamo  G, Diaz  J. Autochthonous transmission of Trypanosoma cruzi, Louisiana. Emerg Infect Dis. 2007;13:6057. DOIPubMedGoogle Scholar
  5. Hotez  PJ, Bottazzi  ME, Franco-Paredes  C, Ault  SK, Periago  MR. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis. 2008;2:e300. DOIPubMedGoogle Scholar
  6. Bern  C, Montgomery  SP. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis. 2009;49:e524. DOIPubMedGoogle Scholar
  7. Stevens  L, Dorn  PL, Schmidt  JO, Klotz  JH, Lucero  D, Klotz  SA. Kissing bugs. The vectors of Chagas. Adv Parasitol. 2011;75:16992. DOIPubMedGoogle Scholar
  8. Kent  RJ. Molecular methods for arthropod blood meal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour. 2009;9:418. DOIPubMedGoogle Scholar
  9. Pizarro  JC, Stevens  L. A new method for forensic DNA analysis of the blood meal in Chagas disease vectors demonstrated using Triatoma infestans from Chuquisaca, Bolivia. PLoS ONE. 2008;3:e3585. DOIPubMedGoogle Scholar
  10. Pizarro  JC, Lucero  DE, Stevens  L. PCR reveals significantly higher rates of Trypanosoma cruzi infection than microscopy in the Chagas vector, Triatoma infestans: high rates found in Chuquisaca, Bolivia. BMC Infect Dis. 2007;7:6673. DOIPubMedGoogle Scholar
  11. Klotz  SA, Dorn  PL, Klotz  JH, Pinnas  JL, Weirauch  C, Kurtz  JR, Feeding behavior of triatomines from the southwestern United States: an update on potential risk for transmission of Chagas disease. Acta Trop. 2009;111:1148. DOIPubMedGoogle Scholar
  12. Kocher  TD, Thomas  WK, Meyer  A, Edwards  SV, Paabo  S, Villablanca  FX, Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989;86:6196200. DOIPubMedGoogle Scholar
  13. Kitano  T, Umetsu  K, Tian  W, Osawa  M. Two universal primer sets for species identification among vertebrates. Int J Legal Med. 2007;121:4237. DOIPubMedGoogle Scholar
  14. Sachadyn  P, Zhang  XM, Clark  LD, Naviaux  RK, Heber-Katz  E. Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse. Mitochondrion. 2008;8:35866. DOIPubMedGoogle Scholar
  15. Reisenman  CE, Gregory  T, Guerenstein  PG, Hildebrand  JG. Feeding and defecation behavior of Triatoma rubida (Uhler, 1894) (Hemiptera: Reduviidae) under laboratory conditions, and its potential role as a vector of Chagas disease in Arizona, USA. Am J Trop Med Hyg. 2011;85:64856. DOIPubMedGoogle Scholar

Main Article

Page created: March 14, 2012
Page updated: March 14, 2012
Page reviewed: March 14, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.