Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 8—August 2012
Research

Population Diversity among Bordetella pertussis Isolates, United States, 1935–2009

Amber J. Schmidtke, Kathryn O. Boney, Stacey W. Martin, Tami H. Skoff, M. Lucia Tondella, and Kathleen M. TattiComments to Author 
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Main Article

Figure 6

Comparison of number of pertussis notifications, proportion of vaccine coverage, and proportion of dominant multilocus sequence typing alleles and multilocus variable number tandem repeat analysis (MLVA) type 27 among a random selection of 661 isolates, United States, 1935–2009. Bars indicate case notifications; lines indicate 2-point moving average distributions of frequency for the time periods assigned in this study. Vaccine coverage data were collected for the United States Immunization Surv

Figure 6. . . Comparison of number of pertussis notifications, proportion of vaccine coverage, and proportion of dominant multilocus sequence typing alleles and multilocus variable number tandem repeat analysis (MLVA) type 27 among a random selection of 661 isolates, United States, 1935–2009. Bars indicate case notifications; lines indicate 2-point moving average distributions of frequency for the time periods assigned in this study. Vaccine coverage data were collected for the United States Immunization Survey (USIS, 1962–1985), National Health Interview Survey (NHIS, 1991−1993), and National Immunization Survey (NIS, 1994−2009). No data are available for 1986−1990 because USIS was cancelled (15). The fim3B trend line was temporally and significantly associated with the rate of increase for pertussis notifications.

Main Article

References
  1. Centers for Disease Control and Prevention. Summary of notifiable diseases—United States, 2008. MMWR Morb Mortal Wkly Rep. 2010;57:194.
  2. Tanaka  M, Vitek  CR, Pascual  FB, Bisgard  KM, Tate  JE, Murphy  TV. Trends in pertussis among infants in the United States, 1980–1999. JAMA. 2003;290:296875. DOIPubMedGoogle Scholar
  3. Tatti  KM, Sparks  KN, Boney  KO, Tondella  ML. Novel multitarget real-time PCR assay for rapid detection of Bordetella species in clinical specimens. J Clin Microbiol. 2011;49:405966. DOIPubMedGoogle Scholar
  4. Hardwick  TH, Cassiday  P, Weyant  R, Bisgard  K, Sanden  G. Changes in predominance and diversity of genomic subtypes of Bordetella pertussis isolated in the United States, 1935 to 1999. Emerg Infect Dis. 2002;8:449. DOIPubMedGoogle Scholar
  5. Cassiday  P, Sanden  G, Heuvelman  K, Mooi  F, Bisgard  KM, Popovic  T. Polymorphism in Bordetella pertussis pertactin and pertussis toxin virulence factors in the United States, 1935–1999. J Infect Dis. 2000;182:14028. DOIPubMedGoogle Scholar
  6. Schouls  LM, van der Heide  HG, Vauterin  L, Vauterin  P, Mooi  FR. Multiple-locus variable-number tandem repeat analysis of Dutch Bordetella pertussis strains reveals rapid genetic changes with clonal expansion during the late 1990s. J Bacteriol. 2004;186:5496505. DOIPubMedGoogle Scholar
  7. Litt  DJ, Neal  SE, Fry  NK. Changes in genetic diversity of the Bordetella pertussis population in the United Kingdom between 1920 and 2006 reflect vaccination coverage and emergence of a single dominant clonal type. J Clin Microbiol. 2009;47:6808. DOIPubMedGoogle Scholar
  8. Kurniawan  J, Maharjan  RP, Chan  WF, Reeves  PR, Sintchenko  V, Gilbert  GL, Bordetella pertussis clones identified by multilocus variable-number tandem-repeat analysis. Emerg Infect Dis. 2010;16:297300.PubMedGoogle Scholar
  9. Advani  A, Van der Heide  HG, Hallander  HO, Mooi  FR. Analysis of Swedish Bordetella pertussis isolates with three typing methods: characterization of an epidemic lineage. J Microbiol Methods. 2009;78:297301. DOIPubMedGoogle Scholar
  10. Schmidtke  AJ, Tondella  ML, Cassiday  PK, Bonkosky  MM, Tatti  KM. Comparison of three molecular typing methods for typing Bordetella pertussis [abstract]. In: 110th General Meeting of the American Society for Microbiology; May 23-27, 2010; San Diego, CA. Washington (DC): American Society for Microbiology; 2010. Abstract C-2591.
  11. Tsang  RS, Lau  AK, Sill  ML, Halperin  SA, Van Caeseele  P, Jamieson  F, Polymorphisms of the fimbria fim3 gene of Bordetella pertussis strains isolated in Canada. J Clin Microbiol. 2004;42:53647. DOIPubMedGoogle Scholar
  12. Hunter  PR, Gaston  MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988;26:24656.PubMedGoogle Scholar
  13. Grundmann  H, Hori  S, Tanner  G. Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J Clin Microbiol. 2001;39:41902. DOIPubMedGoogle Scholar
  14. Mattoo  SCJ. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005;18:32682. DOIPubMedGoogle Scholar
  15. Hinman  AR, Orenstein  WA, Schuchat  A; Centers for Disease Control and Prevention. Vaccine-preventable diseases, immunizations, and MMWR—1961–2011. MMWR Surveill Summ. 2011;60(Suppl 4):4957.PubMedGoogle Scholar
  16. Kallonen  T, He  Q. Bordetella pertussis strain variation and evolution postvaccination. Expert Rev Vaccines. 2009;8:86375. DOIPubMedGoogle Scholar
  17. Maharjan  RP, Gu  C, Reeves  PR, Sintchenko  V, Gilbert  GL, Lan  R. Genome-wide analysis of single nucleotide polymorphisms in Bordetella pertussis using comparative genomic sequencing. Res Microbiol. 2008;159:6028. DOIPubMedGoogle Scholar
  18. Bart  MJ, van Gent  M, van der Heide  HG, Boekhorst  J, Hermans  P, Parkhill  J, Comparative genomics of prevaccination and modern Bordetella pertussis strains. BMC Genomics. 2010;11:627. DOIPubMedGoogle Scholar
  19. Komatsu  E, Yamaguchi  F, Abe  A, Weiss  AA, Watanabe  M. Synergic effect of genotype changes in pertussis toxin and pertactin on adaptation to an acellular pertussis vaccine in the murine intranasal challenge model. Clin Vaccine Immunol. 2010;17:80712. DOIPubMedGoogle Scholar
  20. Mooi  FR, van Loo  IH, van Gent  M, He  Q, Bart  MJ, Heuvelman  KJ, Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis. 2009;15:120613. DOIPubMedGoogle Scholar
  21. King  AJ, Berbers  G, van Oirschot  HF, Hoogerhout  P, Knipping  K, Mooi  FR. Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. Microbiology. 2001;147:288595.PubMedGoogle Scholar
  22. He  Q, Makinen  J, Berbers  G, Mooi  FR, Viljanen  MK, Arvilommi  H, Bordetella pertussis protein pertactin induces type-specific antibodies: one possible explanation for the emergence of antigenic variants? J Infect Dis. 2003;187:12005. DOIPubMedGoogle Scholar
  23. Mooi  FR, Hallander  H, Wirsing von Konig  CH, Hoet  B, Guiso  N. Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. Eur J Clin Microbiol Infect Dis. 2000;19:17481. DOIPubMedGoogle Scholar
  24. Kodama  A, Kamachi  K, Horiuchi  Y, Konda  T, Arakawa  Y. Antigenic divergence suggested by correlation between antigenic variation and pulsed-field gel electrophoresis profiles of Bordetella pertussis isolates in Japan. J Clin Microbiol. 2004;42:54537. DOIPubMedGoogle Scholar
  25. Hausman  SZ, Burns  DL. Use of pertussis toxin encoded by ptx genes from Bordetella bronchiseptica to model the effects of antigenic drift of pertussis toxin on antibody neutralization. Infect Immun. 2000;68:37637. DOIPubMedGoogle Scholar
  26. Williamson  P, Matthews  R. Epitope mapping the Fim2 and Fim3 proteins of Bordetella pertussis with sera from patients infected with or vaccinated against whooping cough. FEMS Immunol Med Microbiol. 1996;13:16978.PubMedGoogle Scholar
  27. Mouillot  D, Lepretre  A. A comparison of species diversity estimators. Res Popul Ecol (Kyoto). 1999;41:20315.

Main Article

Page created: July 19, 2012
Page updated: July 19, 2012
Page reviewed: July 19, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external