Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 19, Number 11—November 2013

CTX-M β-Lactamase–producing Klebsiella pneumoniae in Suburban New York City, New York, USA

Guiqing WangComments to Author , Tiangui Huang, Pavan Kumar Makam Surendraiah, Kemeng Wang, Rashida Komal, Jian Zhuge, Chian-Ru Chern, Alexander A. Kryszuk, Cassidy King, and Gary P. Wormser
Author affiliations: New York Medical College, Valhalla, New York, USA

Main Article

Table 4

In vitro antimicrobial susceptibility of CTX-M ESBL-producing K. pneumoniae isolates, New York, 2005–2012*

Antimicrobial agent No. isolates tested No. (%) susceptible isolates MIC50 MIC90 MIC range
Cefoxitin 25 16 (64.0) ≤8 >16 <8–>16
Cefotaxime† 22 0 >256 >256 16–>256
Ceftazidime† 22 2 (9.1) 16 128 4–>256
Pip/Tazo 25 9 (36.0) 64 >64 <16–>64
Ertapenem 25 23 (92.0) <2 <2 <2–>4
Meropenem† 22 21 (95.5) 0.094 0.125 0.047–2.0
Imipenem† 22 20 (90.1) 0.25 1.5 0.19–6.0
Ciprofloxacin 25 3 (12.0) >2 >2 <1–>2
Amikacin 25 18 (72.0) <16 >32 <16–>32
Gentamicin 25 8 (32.0) >8 >8 <4–>8
Tetracycline 25 5 (20.0) >8 >8 <4–>8
TMP/SMX 25 1 (4.0) >2/38 >/38 <2/38–>2/38
Tigecycline†‡ 22 19 (86.4) 1 3 0.75– 8
Colistin†§ 22 21 (95.5) 0.25 0.38 0.19–64

*n = 25; MIC50; 50% minimum inhibitory concentration; MIC90, 90% minimum inhibitory concentration; Pip/Tazo, piperacillin/tazobactam; TMP/SMX, trimethoprim/sulfamethoxazole. MICs were determined by the MicroScan system, except for certain antimicrobial agents that were tested by Etest as specified.
†MICs were determined by Etest.
‡Susceptibility defined by Food and Drug Administration breakpoints.
§Susceptibility defined by Clinical Laboratory and Standards Institute breakpoints for Acinetobacter baumannii (19).

Main Article

  1. Rossolini  GM, D’Andrea  MM, Mugnaioli  C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect. 2008;14(Suppl 1):3341. DOIPubMedGoogle Scholar
  2. Bonnet  R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48:114. DOIPubMedGoogle Scholar
  3. Paterson  DL, Hujer  KM, Hujer  AM, Yeiser  B, Bonomo  MD, Rice  LB, Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob Agents Chemother. 2003;47:355460. DOIPubMedGoogle Scholar
  4. Moland  ES, Black  JA, Hossain  A, Hanson  ND, Thomson  KS, Pottumarthy  S. Discovery of CTX-M-like extended-spectrum beta-lactamases in Escherichia coli isolates from five US States. Antimicrob Agents Chemother. 2003;47:23823. DOIPubMedGoogle Scholar
  5. Lewis  JS, Herrera  M, Wickes  B, Patterson  JE, Jorgensen  JH. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother. 2007;51:401521. DOIPubMedGoogle Scholar
  6. Sidjabat  HE, Paterson  DL, Adams-Haduch  JM, Ewan  L, Pasculle  AW, Muto  CA, Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in western Pennsylvania. Antimicrob Agents Chemother. 2009;53:47339. DOIPubMedGoogle Scholar
  7. Johnson  JR, Urban  C, Weissman  SJ, Jorgensen  JH, Lewis  JS II, Hansen  G, Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-beta-lactamase-producing E. coli from the United States, 2000 to 2009. Antimicrob Agents Chemother. 2012;56:236470. DOIPubMedGoogle Scholar
  8. Qi  C, Pilla  V, Yu  JH, Reed  K. Changing prevalence of Escherichia coli with CTX-M-type extended-spectrum beta-lactamases in outpatient urinary E. coli between 2003 and 2008. Diagn Microbiol Infect Dis. 2010;67:8791. DOIPubMedGoogle Scholar
  9. Urban  C, Mariano  N, Bradford  PA, Tuckman  M, Segal-Maurer  S, Wehbeh  W, Identification of CTX-M beta-lactamases in Escherichia coli from hospitalized patients and residents of long-term care facilities. Diagn Microbiol Infect Dis. 2010;66:4026 . DOIPubMedGoogle Scholar
  10. Tiruvury  H, Johnson  JR, Mariano  N, Grenner  L, Colon-Urban  R, Erritouni  M, Identification of CTX-M beta-lactamases among Escherichia coli from the community in New York City. Diagn Microbiol Infect Dis. 2012;72:24852. DOIPubMedGoogle Scholar
  11. McGettigan  SE, Hu  B, Andreacchio  K, Nachamkin  I, Edelstein  PH. Prevalence of CTX-M beta-lactamases in Philadelphia, Pennsylvania. J Clin Microbiol. 2009;47:29704. DOIPubMedGoogle Scholar
  12. Castanheira  M, Sader  HS, Jones  RN. Antimicrobial susceptibility patterns of KPC-producing or CTX-M-producing Enterobacteriaceae. Microb Drug Resist. 2010;16:615. DOIPubMedGoogle Scholar
  13. Sjölund  M, Yam  J, Schwenk  J, Joyce  K, Medalla  F, Barzilay  E, Human Salmonella infection yielding CTX-M beta-lactamase, United States. Emerg Infect Dis. 2008;14:19579. DOIPubMedGoogle Scholar
  14. Folster  JP, Pecic  G, Krueger  A, Rickert  R, Burger  K, Carattoli  A, Identification and characterization of CTX-M-producing Shigella isolates in the United States. Antimicrob Agents Chemother. 2010;54:226970. DOIPubMedGoogle Scholar
  15. Hanson  ND, Moland  ES, Hong  SG, Propst  K, Novak  DJ, Cavalieri  SJ. Surveillance of community-based reservoirs reveals the presence of CTX-M, imported AmpC, and OXA-30 beta-lactamases in urine isolates of Klebsiella pneumoniae and Escherichia coli in a U.S. community. Antimicrob Agents Chemother. 2008;52:38146. DOIPubMedGoogle Scholar
  16. Lascols  C, Hackel  M, Hujer  AM, Marshall  SH, Bouchillon  SK, Hoban  DJ, Using nucleic acid microarrays to perform molecular epidemiology and detect novel beta-lactamases: a snapshot of extended-spectrum beta-lactamases throughout the world. J Clin Microbiol. 2012;50:16329 . DOIPubMedGoogle Scholar
  17. Castanheira  M, Mendes  RE, Rhomberg  PR, Jones  RN. Rapid emergence of blaCTX-M among Enterobacteriaceae in U.S. medical centers: molecular evaluation from the MYSTIC Program (2007). Microb Drug Resist. 2008;14:2116. DOIPubMedGoogle Scholar
  18. Hoban  DJ, Lascols  C, Nicolle  LE, Badal  R, Bouchillon  S, Hackel  M, Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum beta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: results from the SMART study 2009–2010. Diagn Microbiol Infect Dis. 2012;74:627. DOIPubMedGoogle Scholar
  19. Clinical Laboratory and Standards Institute. Performance standards for antimicrobial susceptibility testing: twentieth supplemental information. CLSI document M100–S20. Wayne (PA): The Institute; 2010.
  20. Lomaestro  BM, Tobin  EH, Shang  W, Gootz  T. The spread of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae to upstate New York. Clin Infect Dis. 2006;43:e268. DOIPubMedGoogle Scholar
  21. Gröbner  S, Linke  D, Schutz  W, Fladerer  C, Madlung  J, Autenrieth  IB, Emergence of carbapenem-non-susceptible extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tubingen, Germany. J Med Microbiol. 2009;58:91222. DOIPubMedGoogle Scholar
  22. Moland  ES, Hanson  ND, Herrera  VL, Black  JA, Lockhart  TJ, Hossain  A, Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother. 2003;51:7114. DOIPubMedGoogle Scholar
  23. Diancourt  L, Passet  V, Verhoef  J, Grimont  PA, Brisse  S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43:417882. DOIPubMedGoogle Scholar
  24. Arlet  G, Rouveau  M, Casin  I, Bouvet  PJ, Lagrange  PH, Philippon  A. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 beta-lactamase and which were isolated in 14 French hospitals. J Clin Microbiol. 1994;32:25538 .PubMedGoogle Scholar
  25. Johnson  JR, Johnston  B, Clabots  C, Kuskowski  MA, Castanheira  M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis. 2010;51:28694. DOIPubMedGoogle Scholar
  26. Rogers  BA, Sidjabat  HE, Paterson  DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011;66:114. DOIPubMedGoogle Scholar
  27. Titelman  E, Iversen  A, Kahlmeter  G, Giske  CG. Antimicrobial susceptibility to parenteral and oral agents in a largely polyclonal collection of CTX-M-14 and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae. APMIS. 2011;119:85363. DOIPubMedGoogle Scholar
  28. Shin  J, Kim  DH, Ko  KS. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect. 2011;63:3947. DOIPubMedGoogle Scholar
  29. Kuroda  H, Yano  H, Hirakata  Y, Arai  K, Endo  S, Kanamori  H, Molecular characteristics of extended-spectrum beta-lactamase-producing Escherichia coli in Japan: Emergence of CTX-M-15-producing E. coli ST131. Diagn Microbiol Infect Dis. 2012;74:2013. DOIPubMedGoogle Scholar
  30. Ruiz de Alegría  C, Rodriguez-Bano  J, Cano  ME, Hernandez-Bello  JR, Calvo  J, Roman  E, Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases in Spain: microbiological and clinical features. J Clin Microbiol. 2011;49:11346. DOIPubMedGoogle Scholar
  31. Clímaco  EC, Minarini  LA, da Costa Darini  AL. CTX-M-producing Klebsiella spp. in a Brazilian hospital: what has changed in 6 years? Diagn Microbiol Infect Dis. 2010;68:1869. DOIPubMedGoogle Scholar
  32. Pitout  JD, Hossain  A, Hanson  ND. Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol. 2004;42:571521. DOIPubMedGoogle Scholar
  33. Wang  G, Kryszuk  AA, Wang  K, Granada  M, Schwartz  I, Wormser  GP. Phenotypic and molecular characterization of carbapenem-resistant Klebsiella pneumoniae clinical isolates (2005–2010). Proceedings of the 111th American Society for Microbiology General Meeting, New Orleans, Louisiana, May 21–24, 2011. Washington: American Society for Microbiology. Abstract C-604.
  34. Pournaras  S, Protonotariou  E, Voulgari  E, Kristo  I, Dimitroulia  E, Vitti  D, Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob Chemother. 2009;64:34852. DOIPubMedGoogle Scholar
  35. Sandegren  L, Linkevicius  M, Lytsy  B, Melhus  A, Andersson  DI. Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. J Antimicrob Chemother. 2012;67:7483. DOIPubMedGoogle Scholar
  36. Karim  A, Poirel  L, Nagarajan  S, Nordmann  P. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett. 2001;201:23741 .PubMedGoogle Scholar
  37. Oteo  J, Cuevas  O, Lopez-Rodriguez  I, Banderas-Florido  A, Vindel  A, Perez-Vazquez  M, Emergence of CTX-M-15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. J Antimicrob Chemother. 2009;64:5248. DOIPubMedGoogle Scholar
  38. Damjanova  I, Toth  A, Paszti  J, Hajbel-Vekony  G, Jakab  M, Berta  J, Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005–the new 'MRSAs'? J Antimicrob Chemother. 2008;62:97885. DOIPubMedGoogle Scholar
  39. Peirano  G, Sang  JH, Pitondo-Silva  A, Laupland  KB, Pitout  JD. Molecular epidemiology of extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae over a 10 year period in Calgary, Canada. [PubMed]. J Antimicrob Chemother. 2012;67:111420. DOIPubMedGoogle Scholar
  40. Chen  S, Hu  F, Xu  X, Liu  Y, Wu  W, Zhu  D, High prevalence of KPC-2-type carbapenemase coupled with CTX-M-type extended-spectrum beta-lactamases in carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. Antimicrob Agents Chemother. 2011;55:24934. DOIPubMedGoogle Scholar

Main Article

Page created: October 31, 2013
Page updated: October 31, 2013
Page reviewed: October 31, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.