Volume 19, Number 11—November 2013
Research
CTX-M β-Lactamase–producing Klebsiella pneumoniae in Suburban New York City, New York, USA
Table 4
Antimicrobial agent | No. isolates tested | No. (%) susceptible isolates | MIC50 | MIC90 | MIC range |
---|---|---|---|---|---|
Cefoxitin | 25 | 16 (64.0) | ≤8 | >16 | <8–>16 |
Cefotaxime† | 22 | 0 | >256 | >256 | 16–>256 |
Ceftazidime† | 22 | 2 (9.1) | 16 | 128 | 4–>256 |
Pip/Tazo | 25 | 9 (36.0) | 64 | >64 | <16–>64 |
Ertapenem | 25 | 23 (92.0) | <2 | <2 | <2–>4 |
Meropenem† | 22 | 21 (95.5) | 0.094 | 0.125 | 0.047–2.0 |
Imipenem† | 22 | 20 (90.1) | 0.25 | 1.5 | 0.19–6.0 |
Ciprofloxacin | 25 | 3 (12.0) | >2 | >2 | <1–>2 |
Amikacin | 25 | 18 (72.0) | <16 | >32 | <16–>32 |
Gentamicin | 25 | 8 (32.0) | >8 | >8 | <4–>8 |
Tetracycline | 25 | 5 (20.0) | >8 | >8 | <4–>8 |
TMP/SMX | 25 | 1 (4.0) | >2/38 | >/38 | <2/38–>2/38 |
Tigecycline†‡ | 22 | 19 (86.4) | 1 | 3 | 0.75– 8 |
Colistin†§ | 22 | 21 (95.5) | 0.25 | 0.38 | 0.19–64 |
*n = 25; MIC50; 50% minimum inhibitory concentration; MIC90, 90% minimum inhibitory concentration; Pip/Tazo, piperacillin/tazobactam; TMP/SMX, trimethoprim/sulfamethoxazole. MICs were determined by the MicroScan system, except for certain antimicrobial agents that were tested by Etest as specified.
†MICs were determined by Etest.
‡Susceptibility defined by Food and Drug Administration breakpoints.
§Susceptibility defined by Clinical Laboratory and Standards Institute breakpoints for Acinetobacter baumannii (19).
References
- Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect. 2008;14(Suppl 1):33–41. DOIPubMedGoogle Scholar
- Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48:1–14. DOIPubMedGoogle Scholar
- Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob Agents Chemother. 2003;47:3554–60. DOIPubMedGoogle Scholar
- Moland ES, Black JA, Hossain A, Hanson ND, Thomson KS, Pottumarthy S. Discovery of CTX-M-like extended-spectrum beta-lactamases in Escherichia coli isolates from five US States. Antimicrob Agents Chemother. 2003;47:2382–3. DOIPubMedGoogle Scholar
- Lewis JS, Herrera M, Wickes B, Patterson JE, Jorgensen JH. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother. 2007;51:4015–21. DOIPubMedGoogle Scholar
- Sidjabat HE, Paterson DL, Adams-Haduch JM, Ewan L, Pasculle AW, Muto CA, Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in western Pennsylvania. Antimicrob Agents Chemother. 2009;53:4733–9. DOIPubMedGoogle Scholar
- Johnson JR, Urban C, Weissman SJ, Jorgensen JH, Lewis JS II, Hansen G, Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-beta-lactamase-producing E. coli from the United States, 2000 to 2009. Antimicrob Agents Chemother. 2012;56:2364–70. DOIPubMedGoogle Scholar
- Qi C, Pilla V, Yu JH, Reed K. Changing prevalence of Escherichia coli with CTX-M-type extended-spectrum beta-lactamases in outpatient urinary E. coli between 2003 and 2008. Diagn Microbiol Infect Dis. 2010;67:87–91. DOIPubMedGoogle Scholar
- Urban C, Mariano N, Bradford PA, Tuckman M, Segal-Maurer S, Wehbeh W, Identification of CTX-M beta-lactamases in Escherichia coli from hospitalized patients and residents of long-term care facilities. Diagn Microbiol Infect Dis. 2010;66:402–6 . DOIPubMedGoogle Scholar
- Tiruvury H, Johnson JR, Mariano N, Grenner L, Colon-Urban R, Erritouni M, Identification of CTX-M beta-lactamases among Escherichia coli from the community in New York City. Diagn Microbiol Infect Dis. 2012;72:248–52. DOIPubMedGoogle Scholar
- McGettigan SE, Hu B, Andreacchio K, Nachamkin I, Edelstein PH. Prevalence of CTX-M beta-lactamases in Philadelphia, Pennsylvania. J Clin Microbiol. 2009;47:2970–4. DOIPubMedGoogle Scholar
- Castanheira M, Sader HS, Jones RN. Antimicrobial susceptibility patterns of KPC-producing or CTX-M-producing Enterobacteriaceae. Microb Drug Resist. 2010;16:61–5. DOIPubMedGoogle Scholar
- Sjölund M, Yam J, Schwenk J, Joyce K, Medalla F, Barzilay E, Human Salmonella infection yielding CTX-M beta-lactamase, United States. Emerg Infect Dis. 2008;14:1957–9. DOIPubMedGoogle Scholar
- Folster JP, Pecic G, Krueger A, Rickert R, Burger K, Carattoli A, Identification and characterization of CTX-M-producing Shigella isolates in the United States. Antimicrob Agents Chemother. 2010;54:2269–70. DOIPubMedGoogle Scholar
- Hanson ND, Moland ES, Hong SG, Propst K, Novak DJ, Cavalieri SJ. Surveillance of community-based reservoirs reveals the presence of CTX-M, imported AmpC, and OXA-30 beta-lactamases in urine isolates of Klebsiella pneumoniae and Escherichia coli in a U.S. community. Antimicrob Agents Chemother. 2008;52:3814–6. DOIPubMedGoogle Scholar
- Lascols C, Hackel M, Hujer AM, Marshall SH, Bouchillon SK, Hoban DJ, Using nucleic acid microarrays to perform molecular epidemiology and detect novel beta-lactamases: a snapshot of extended-spectrum beta-lactamases throughout the world. J Clin Microbiol. 2012;50:1632–9 . DOIPubMedGoogle Scholar
- Castanheira M, Mendes RE, Rhomberg PR, Jones RN. Rapid emergence of blaCTX-M among Enterobacteriaceae in U.S. medical centers: molecular evaluation from the MYSTIC Program (2007). Microb Drug Resist. 2008;14:211–6. DOIPubMedGoogle Scholar
- Hoban DJ, Lascols C, Nicolle LE, Badal R, Bouchillon S, Hackel M, Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum beta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: results from the SMART study 2009–2010. Diagn Microbiol Infect Dis. 2012;74:62–7. DOIPubMedGoogle Scholar
- Clinical Laboratory and Standards Institute. Performance standards for antimicrobial susceptibility testing: twentieth supplemental information. CLSI document M100–S20. Wayne (PA): The Institute; 2010.
- Lomaestro BM, Tobin EH, Shang W, Gootz T. The spread of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae to upstate New York. Clin Infect Dis. 2006;43:e26–8. DOIPubMedGoogle Scholar
- Gröbner S, Linke D, Schutz W, Fladerer C, Madlung J, Autenrieth IB, Emergence of carbapenem-non-susceptible extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tubingen, Germany. J Med Microbiol. 2009;58:912–22. DOIPubMedGoogle Scholar
- Moland ES, Hanson ND, Herrera VL, Black JA, Lockhart TJ, Hossain A, Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother. 2003;51:711–4. DOIPubMedGoogle Scholar
- Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43:4178–82. DOIPubMedGoogle Scholar
- Arlet G, Rouveau M, Casin I, Bouvet PJ, Lagrange PH, Philippon A. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 beta-lactamase and which were isolated in 14 French hospitals. J Clin Microbiol. 1994;32:2553–8 .PubMedGoogle Scholar
- Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis. 2010;51:286–94. DOIPubMedGoogle Scholar
- Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011;66:1–14. DOIPubMedGoogle Scholar
- Titelman E, Iversen A, Kahlmeter G, Giske CG. Antimicrobial susceptibility to parenteral and oral agents in a largely polyclonal collection of CTX-M-14 and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae. APMIS. 2011;119:853–63. DOIPubMedGoogle Scholar
- Shin J, Kim DH, Ko KS. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect. 2011;63:39–47. DOIPubMedGoogle Scholar
- Kuroda H, Yano H, Hirakata Y, Arai K, Endo S, Kanamori H, Molecular characteristics of extended-spectrum beta-lactamase-producing Escherichia coli in Japan: Emergence of CTX-M-15-producing E. coli ST131. Diagn Microbiol Infect Dis. 2012;74:201–3. DOIPubMedGoogle Scholar
- Ruiz de Alegría C, Rodriguez-Bano J, Cano ME, Hernandez-Bello JR, Calvo J, Roman E, Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases in Spain: microbiological and clinical features. J Clin Microbiol. 2011;49:1134–6. DOIPubMedGoogle Scholar
- Clímaco EC, Minarini LA, da Costa Darini AL. CTX-M-producing Klebsiella spp. in a Brazilian hospital: what has changed in 6 years? Diagn Microbiol Infect Dis. 2010;68:186–9. DOIPubMedGoogle Scholar
- Pitout JD, Hossain A, Hanson ND. Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol. 2004;42:5715–21. DOIPubMedGoogle Scholar
- Wang G, Kryszuk AA, Wang K, Granada M, Schwartz I, Wormser GP. Phenotypic and molecular characterization of carbapenem-resistant Klebsiella pneumoniae clinical isolates (2005–2010). Proceedings of the 111th American Society for Microbiology General Meeting, New Orleans, Louisiana, May 21–24, 2011. Washington: American Society for Microbiology. Abstract C-604.
- Pournaras S, Protonotariou E, Voulgari E, Kristo I, Dimitroulia E, Vitti D, Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob Chemother. 2009;64:348–52. DOIPubMedGoogle Scholar
- Sandegren L, Linkevicius M, Lytsy B, Melhus A, Andersson DI. Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. J Antimicrob Chemother. 2012;67:74–83. DOIPubMedGoogle Scholar
- Karim A, Poirel L, Nagarajan S, Nordmann P. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett. 2001;201:237–41 .PubMedGoogle Scholar
- Oteo J, Cuevas O, Lopez-Rodriguez I, Banderas-Florido A, Vindel A, Perez-Vazquez M, Emergence of CTX-M-15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. J Antimicrob Chemother. 2009;64:524–8. DOIPubMedGoogle Scholar
- Damjanova I, Toth A, Paszti J, Hajbel-Vekony G, Jakab M, Berta J, Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005–the new 'MRSAs'? J Antimicrob Chemother. 2008;62:978–85. DOIPubMedGoogle Scholar
- Peirano G, Sang JH, Pitondo-Silva A, Laupland KB, Pitout JD. Molecular epidemiology of extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae over a 10 year period in Calgary, Canada. [PubMed]. J Antimicrob Chemother. 2012;67:1114–20. DOIPubMedGoogle Scholar
- Chen S, Hu F, Xu X, Liu Y, Wu W, Zhu D, High prevalence of KPC-2-type carbapenemase coupled with CTX-M-type extended-spectrum beta-lactamases in carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. Antimicrob Agents Chemother. 2011;55:2493–4. DOIPubMedGoogle Scholar
Page created: October 31, 2013
Page updated: October 31, 2013
Page reviewed: October 31, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.