Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 19, Number 2—February 2013
Dispatch

Transmission and Maintenance Cycle of Bartonella quintana among Rhesus Macaques, China

Hao Li, Wei Liu, Guang-Zhou Zhang, Zhao-Zeng Sun, Jie-Ying Bai, Bao-Gui Jiang, Yao-Yun Zhang, Xiao-Guang Zhao, Hong Yang, Guang Tian, Yu-Chuan Li, Lin Zeng, Michael Kosoy, and Wu-Chun CaoComments to Author 
Author affiliations: Author affiliations: State Key Laboratory of Pathogen and Biosecurity�?"Beijing Institute of Microbiology and Epidemiology, Beijing, People�?(tm)s Republic of China (H. Li, W. Liu, B.-G. Jiang, Y.-Y. Zhang, X.-G. Zhao, H. Yang, G. Tian, Y.-C. Li, W.-C. Cao); Academy of Military Medical Sciences Laboratory Animal Center, Beijing (G.-Z. Zhang, Z.-Z. Sun, J.-Y. Bai, L. Zeng); Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (M. Kosoy)

Main Article

Figure 2

Phylogenetic analyses of louse species and Bartonella spp. A) Phylogenetic tree of louse species based on the partial Cytb sequence (364-bp), obtained by using the neighbor-joining method with maximum composite likelihood analysis and bootstrap analysis of 1,000 replicates. Arrow indicates the Pedicinus obtusus louse identified in this study. The tree was rooted with the louse species Fahrenholzia pinnata. Numbers shown at each node indicate percentage of replicates that reproduced the topology

Figure 2. . Phylogenetic analyses of louse species and Bartonella spp. A) Phylogenetic tree of louse species based on the partial Cytb sequence (364-bp), obtained by using the neighbor-joining method with maximum composite likelihood analysis and bootstrap analysis of 1,000 replicates. Arrow indicates the Pedicinus obtusus louse identified in this study. The tree was rooted with the louse species Fahrenholzia pinnata. Numbers shown at each node indicate percentage of replicates that reproduced the topology of each clade. Scale bar indicates estimated evolutionary distance of 0.5 substitutions per position. B) Phylogenetic tree of Bartonella spp. based on the combined RNase P RNA, 16S, and 23S rRNA sequence alignment (4131-bp), obtained by using the same analytical method as described in panel A. Arrow indicates the RM-11 isolate. The tree was rooted with the louse species Agrobacterium tumefaciens. The GenBank accession numbers of Bartonella strains used for phylogenetic analysis are shown in Technical Appendix Table 2. Scale bar indicates estimated evolutionary distance of 0.01 substitutions per position.

Main Article

1These authors contributed equally to this article.

Page created: January 22, 2013
Page updated: January 22, 2013
Page reviewed: January 22, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external