Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 3—March 2014
Research

Hendra Virus Vaccine, a One Health Approach to Protecting Horse, Human, and Environmental Health

Deborah Middleton1Comments to Author , Jackie Pallister1, Reuben Klein, Yan-Ru Feng, Jessica Haining, Rachel Arkinstall, Leah Frazer, Jin-An Huang, Nigel Edwards, Mark Wareing, Martin Elhay, Zia Hashmi, John Bingham, Manabu Yamada, Dayna Johnson, John White, Adam Foord, Hans G. Heine, Glenn A. Marsh, Christopher C. Broder, and Lin-Fa Wang
Author affiliations: CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D. Middleton, J. Pallister, R. Klein, J. Haining, R. Arkinstall, L. Frazer, J. Bingham, D. Johnson, J. White, A. Foord, H.G. Heine, G.A. Marsh, L.-F. Wang); Uniformed Services University, Bethesda, Maryland, USA (Y.-R. Feng, C.C. Broder); Zoetis Research & Manufacturing Pty Ltd, Parkville, Victoria, Australia (J.-A. Huang, N. Edwards, M. Wareing, M. Elhay, Z. Hashmi); National Institute of Animal Health, Ibaraki, Japan (M. Yamada); Duke–NUS (Duke and the National University of Singapore) Graduate Medical School, Singapore (L.-F. Wang)

Main Article

Table 2

Quantitative reverse transcription PCR detection of Hendra virus N gene in samples collected daily from control horses*

Horse no., sample log10 relative copy number of Hendra virus N RNA, dpc
0 1 2 3 4 5 6 7 8 9
1†
Blood −0.2 1.4 1.7
Urine −0.8 1.1
Feces −0.7
Nasal swab −0.3 −0.2 1.4 1.6 1.4 1.7
Oral swab





−0.1
1.3
1.3


2‡
Blood 0.5 2.6 3.0
Urine 0.3 1.7
Feces −0.05 2.0
Nasal swab 1.2 2.0 1.6 3.5 2.5
Oral swab





0.4
1.5



3‡
Blood 1.5 2.8 2.9 3.4
Urine 1.8 1.7 3.0
Feces 1.5 1.7 2.1
Nasal swab 1.7 2.5 1.2 2.4 3.0 3.8 3.7 2.0
Oral swab







1.9
1.9
2.3
4‡
Blood 0.1 1.9 2.5 3.0
Urine 0.07 0.5 2.1
Feces 1.3 2.4 2.1
Nasal swab 0.3 1.6 2.5
Oral swab 0.2 1.2 1.6

*Duplicate samples were obtained and tested by reverse transcription PCR. Cycle threshold values were converted to relative copy numbers by using a standard curve of a sample with a known copy number. dpc, days after challenge. − indicates a negative result; blank space indicates no sample was tested.
†N gene data for horse 1 was obtained from the current study.
‡N gene data for horses 2–4 are unpublished data from a previous study (6).

Main Article

References
  1. Halpin  K, Hyatt  AD, Fogarty  R, Middleton  D, Bingham  J, Epstein  JH, Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg. 2011;85:94651. DOIPubMedGoogle Scholar
  2. Playford  EG, McCall  B, Smith  G, Slinko  V, Allen  G, Smith  I, Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008. Emerg Infect Dis. 2010;16:21923. DOIPubMedGoogle Scholar
  3. Field  H, Crameri  G, Kung  NY, Wang  LF. Ecological aspects of Hendra virus. Curr Top Microbiol Immunol. 2012;359:1123 . DOIPubMedGoogle Scholar
  4. Williamson  MM, Hooper  PT, Selleck  PW, Gleeson  LJ, Daniels  PW, Westbury  HA, Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust Vet J. 1998;76:8138 . DOIPubMedGoogle Scholar
  5. Weingartl  HM, Berhane  Y, Czub  M. Animal models of henipavirus infection. Vet J. 2009;181:21120 . DOIPubMedGoogle Scholar
  6. Marsh  GA, Haining  J, Hancock  TJ, Robinson  R, Foord  AJ, Barr  JA, Experimental infection of horses with Hendra virus/Australia/Horse/2008/Redlands. Emerg Infect Dis. 2011;17:22328 . DOIPubMedGoogle Scholar
  7. Middleton  DJ, Weingartl  HM. Henipaviruses in their natural hosts. Curr Top Microbiol Immunol. 2012;359:10521. DOIPubMedGoogle Scholar
  8. Degeling  C, Kerridge  I. Hendra in the news: public policy meets public morality in times of zoonotic uncertainty. Soc Sci Med. 2013;82:15663. DOIPubMedGoogle Scholar
  9. Mendez  DH, Judd  J, Speare  R. Unexpected result of Hendra virus outbreaks for veterinarians, Queensland, Australia. Emerg Infect Dis. 2012;18:835. DOIPubMedGoogle Scholar
  10. Mahalingam  S, Herrero  LJ, Playford  EG, Spann  K, Herring  B, Rolph  MS, Hendra virus: an emerging paramyxovirus in Australia. Lancet Infect Dis. 2012;12:799807. DOIPubMedGoogle Scholar
  11. Jones  KE, Patel  NG, Levy  MA, Storeygard  A, Balk  D, Gittleman  J, Global trends in emerging infectious diseases. Nature. 2008;451:9903. DOIPubMedGoogle Scholar
  12. Mazet  JA, Clifford  DL, Coppolillo  PB, Deolalikar  AB, Erickson  JD, Kazwala  RR. “One Health” approach to address emerging zoonoses: the Hali Project in Tanzania. PLoS Med. 2009;6:e1000190. DOIPubMedGoogle Scholar
  13. Abraham  G, Muschialli  J, Middleton  D. Animal experimentation in level 4 facilities. In: Richmond JY, editor. Anthology of biosafety: BSL-4 laboratories. Mundelein (IL): American Biological Safety Association; 2002. p. 343–59.
  14. Bossart  KN, Crameri  G, Dimitrov  AS, Mungall  BA, Feng  YR, Patch  JR, Receptor binding, fusion inhibition and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J Virol. 2005;79:6690702. DOIPubMedGoogle Scholar
  15. Pallister  J, Middleton  D, Wang  LF, Klein  R, Haining  J, Robinson  R, A recombinant Hendra virus G glycoprotein–based subunit vaccine protects ferrets from lethal Hendra virus challenge. Vaccine. 2011;29:562330. DOIPubMedGoogle Scholar
  16. Mungall  BA, Middleton  D, Crameri  G, Bingham  J, Halpin  K, Russell  G, Feline model of acute Nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol. 2006;80:12293302. DOIPubMedGoogle Scholar
  17. McEachern  JA, Bingham  J, Crameri  G, Green  DJ, Hancock  TJ, Middleton  D, A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine. 2008;26:384252. DOIPubMedGoogle Scholar
  18. Bossart  KN, Rockx  B, Feldmann  F, Brining  D, Scott  D, LaCasse  R, A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci Transl Med. 2012;4:146ra07. PMID: 22875827
  19. Steffen  DL, Xu  K, Nikolov  DB, Broder  CC. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Viruses. 2012;4:280308. DOIPubMedGoogle Scholar
  20. Broder  C, Geisbert  T, Xu  K, Nikolov  D, Wang  L-F, Middleton  D, Immunization strategies against henipaviruses. In: Lee B, Rota PA, editors. Henipavirus. Berlin: Springer; 2012. p. 197–223.
  21. Bossart  KN, Zhu  Z, Middleton  D, Klippel  J, Crameri  G, Bingham  J, A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLoS Pathog. 2009;5:e1000642. DOIPubMedGoogle Scholar
  22. Bossart  KN, Geisbert  TW, Feldmann  H, Zhu  Z, Feldmann  F, Geisbert  JB, A neutralizing human monoclonal antibody protects African green monkeys from Hendra virus challenge. Sci Transl Med. 2011;3:105ra3. PMID: 22013123
  23. Guillaume  V, Contamin  H, Loth  P, Georges-Courbot  MC, Lefeuvre  A, Marianneau  P, Nipah virus: vaccination and passive protection studies in a hamster model. J Virol. 2004;78:83440. DOIPubMedGoogle Scholar
  24. Guillaume  V, Contamin  H, Loth  P, Grosjean  I, Courbot  MC, Deubel  V, Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J Virol. 2006;80:19728. DOIPubMedGoogle Scholar
  25. Guillaume  V, Wong  KT, Looi  RY, Georges-Courbot  MC, Barrot  L, Buckland  R, Acute Hendra virus infection: analysis of the pathogenesis and passive antibody protection in the hamster model. Virology. 2009;387:45965. DOIPubMedGoogle Scholar
  26. Graham  BS, Crowe  JE. Immunization against viral diseases. In: Knipe DM, Griffin DE, Lamb RA, Straus SE, Howley PM, Martin MA, et al., editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 487–538.
  27. Wolinsky  JS, Waxham  MN, Server  AC. Protective effects of glycoprotein-specific monoclonal antibodies on the course of experimental mumps virus meningoencephalitis. J Virol. 1985;53:72734 .PubMedGoogle Scholar
  28. Plotkin  SA. Vaccination against the major infectious diseases. C R Acad Sci III. 1999;322:94351. DOIPubMedGoogle Scholar
  29. Snoy  PJ. Establishing efficacy of human products using animals: the US Food and Drug Administration's “animal rule.”. Vet Pathol. 2010;47:7748. DOIPubMedGoogle Scholar
  30. Breed  AC, Yu  M, Barr  JA, Crameri  G, Thalmann  CM, Wang  LF. Prevalence of henipavirus and rubulavirus antibodies in pteropid bats, Papua New Guinea. Emerg Infect Dis. 2010;16:19979. DOIPubMedGoogle Scholar
  31. Drexler  JF, Corman  VM, Gloza-Rausch  F, Seebens  A, Annan  A, Ipsen  A, Henipavirus RNA in African bats. PLoS ONE. 2009;4:e6367. DOIPubMedGoogle Scholar
  32. Epstein  JH, Prakash  V, Smith  CS, Daszak  P, McLaughlin  AB, Meehan  G, Henipavirus infection in fruit bats (Pteropus giganteus), India. Emerg Infect Dis. 2008;14:130911. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: February 19, 2014
Page updated: February 19, 2014
Page reviewed: February 19, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external