Volume 21, Number 4—April 2015
Dispatch
Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus
Figure 2

Figure 2. Amino acid similarity of pestiviruses Aydin/04 and Burdur/05 to representative CSFV and BDV polyprotein sequences. The same CSFV and BDV polyprotein sequences as in Figure 1 were used for analysis. Grouping scan was performed with the SSE software platform as described previously, by using a window of 200 aa with 20-aa increments (12). For calculation of genetic distances, the Kimura 2-parameter model was applied. Borders of the mature viral proteins in the polyprotein of Aydin/04 are given below. BDV, border disease virus; CSFV, classical swine fever virus; C, core protein; E, envelope protein; rns, ribonuclease secreted; Npro, N-terminal autoprotease; NS, nonstructural protein; p7, protein p7.
References
- Simmonds P, Becher P, Collett MS, Gould EA, Heinz FX, Meyers G, Family Flaviviridae. In: Virus taxonomy. Ninth report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier; 2012. p. 1003–20.
- Edwards S, Fukusho A, Lefevre PC, Lipowski A, Pejsak Z, Roehe P, Classical swine fever: the global situation. Vet Microbiol. 2000;73:103–19. DOIPubMedGoogle Scholar
- Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J. 2003;165:11–20. DOIPubMedGoogle Scholar
- Postel A, Moennig V, Becher P. Classical swine fever in Europe—the current situation. Berl Munch Tierarztl Wochenschr. 2013;126:468–75 .PubMedGoogle Scholar
- Kawanishi N, Tsuduku S, Shimizu H, Ohtani Y, Kameyama K, Yamakawa M, First isolation of border disease virus in Japan is from a pig farm with no ruminants. Vet Microbiol. 2014;171:210–4. DOIPubMedGoogle Scholar
- Oguzoglu TC, Tan MT, Toplu N, Demir AB, Bilge-Dagalp S, Karaoglu T, Border disease virus (BDV) infections of small ruminants in Turkey: a new BDV subgroup? Vet Microbiol. 2009;135:374–9. DOIPubMedGoogle Scholar
- EU diagnostic manual for classical swine fever (CSF) diagnosis: technical part. 2007 [cited 2014 Jan 6]. http://www.tiho-hannover.de/fileadmin/user_upload/tiho_hannover/kliniken_institute/21_virologie/eurl/Technical_Annex_Draft_2007.pdf
- Becher P, Schmeiser S, Oguzoglu TC, Postel A. Complete genome sequence of a novel pestivirus from sheep. J Virol. 2012;86:11412. DOIPubMedGoogle Scholar
- Fischer N, Rohde H, Indenbirken D, Gunther T, Reumann K, Lutgehetmann M, Rapid metagenomic diagnostics for suspected outbreak of severe pneumonia. Emerg Infect Dis. 2014;20:1072–5. DOIPubMedGoogle Scholar
- Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61:1061–7. DOIPubMedGoogle Scholar
- Postel A, Schmeiser S, Bernau J, Meindl-Boehmer A, Pridotkas G, Dirbakova Z, Improved strategy for phylogenetic analysis of classical swine fever virus based on full-length E2 encoding sequences. Vet Res. 2012;43:50. DOIPubMedGoogle Scholar
- Simmonds P. SSE: a nucleotide and amino acid sequence analysis platform. BMC Res Notes. 2012;5:50. DOIPubMedGoogle Scholar
- Becher P, Avalos Ramirez R, Orlich M, Cedillo Rosales S, Konig M, Schweizer M, Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification. Virology. 2003;311:96–104. DOIPubMedGoogle Scholar
- Thabti F, Letellier C, Hammami S, Pepin M, Ribiere M, Mesplede A, Detection of a novel border disease virus subgroup in Tunisian sheep. Arch Virol. 2005;150:215–29 . DOIPubMedGoogle Scholar