Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 6—June 2015

Cost-effectiveness of Chlamydia Vaccination Programs for Young Women

Kwame Owusu-EduseiComments to Author , Harrell W. Chesson, Thomas L. Gift, Robert C. Brunham, and Gail Bolan
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K. Owusu-Edusei Jr, H.W. Chesson, T.L. Gift, G. Bolan); University of British Columbia, Vancouver, British Columbia, Canada (R.C. Brunham)

Main Article

Table 1

Model parameters, base-case values, and ranges used in a model to assess health and economic outcomes of a hypothetical chlamydia vaccine*

Parameter Value (range)
Men Women
Duration of symptomatic infection, d 14 (10–21) 28 (10–35) (15,16)
Duration of asymptomatic infection, d 182.5 (120–240) 365 (240–480) (15,16)
Incubation period, d 14 (7–21) 14 (7–21) (15,16)
Duration of sequelae, d 21 (10–30) 60 (45–75) (16)
Probability of sequelae, % 2 (0–5) 15 (10–20) (16,18)
Per-partnership transmission probability, % 70 (25–80) 68 (25–80) (19)
Probability of symptomatic infection, % 50 (20–80) 20 (10–50) (15,16)
Average no. partners in past year, high sexual activity 13.30 (10.00–16.00) 33.26 (30.00–40.00) (15,16,20)
Average no. partners in past year, low sexual activity 0.90 (0.60–1.20) 0.88 (0.60–1.50) (15,16,20)
Proportion in low sexual activity class, % 95.0 (90.0–99.0) 97.9 (95.0–99.0) (15,16,20)
Annual screening rate, % 0 30 (10–50) (15)
Probability of postscreening treatment, % 80 (50–99) 80 (50–99) (15)
Probability of treatment, symptomatic, % 89 (80–100) 89 (80–100) (4)
Test sensitivity, % 95 (90–100) 95 (90–100) (21)
Test specificity, % 99 (95–100) 99 (95–100) (21)
Treatment efficacy (doxycycline, azithromycin), % 92 (80–100) 92 (80–100) (15,22)
QALYs lost/case
Symptomatic infection 0.005646 ± 50% 0.009913 (± 50%) (16)
Sequelae† 0.009530 ± 50% 0.497580 (± 50%) (16)
Costs (2013 US Dollars)
Treatment of acute chlamydia‡ 185.2 ± 50% 183.0 (± 50%) (4,2325)
Sequelae† 1,337 ± 50% 4,516 (± 50%) (4,16,26)
Screening 55 ± 50% 55 (± 50%) (4,23)
Vaccination 547 ± 50% 547 (± 50%) Model assumption
Vaccine coverage, 14-y-old persons, % 0 30 (10–50) Model assumption (27)
Vaccine coverage, 15–24-y-old persons, % 0 30 Model assumption (27)
Vaccine efficacy, % 75 (50–100) 75 (50–100) Model assumption (27)
Duration of vaccine-conferred immunity, y 10 (1–100) 10 (1–100) Model assumption
Duration of infection-conferred immunity, y 1 (0.5–5.0) 1 (0.5–5.0) (17)
Relative size of the 14-y-old population entering model compared with overall population model, % 10 (5–15) Model assumption
Sexual mixing parameter§ 0.50 (0.10–0.90) Model assumption
Discount rate, % 3 (0–10) Model assumption

*QALYs, quality-adjusted life years.
†Includes productivity costs or QALYs (where applicable) for epididymitis for men and complications associated with pelvic inflammatory diseases (i.e., chronic pelvic pain, ectopic pregnancy, and infertility) for women.
‡Includes productivity costs associated with acute chlamydia and seeking treatment (24) and the reported youth (16–24-y-old persons) employment rate in 2010 (48.9%) (25).
§Used to determine the degree of mixing between the 2 (high and low) sexual activity groups (0, random mixing; 1, fully assortative).

Main Article

  1. World Health Organization. Global incidence and prevalence of selected curable sexually transmitted infections, 2008. Geneva: The Organization; 2012.
  2. Centers for Disease Control and Prevention. Sexually transmitted disease surveillance, 2012. Atlanta: The Centers; 2013.
  3. Satterwhite  CL, Torrone  E, Meitis  E, Dunne  EF, Mahajan  R, Ocfemia  MC, Sexually transmitted infections among US women and men: Prevalence and incidence estimates, 2008. Sex Transm Dis. 2013;40:18793. DOIPubMedGoogle Scholar
  4. Owusu-Edusei  K Jr, Chesson  HW, Gift  TL, Tao  G, Ocfemia  MC, Mahajan  R, The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sex Transm Dis. 2013;40:197201. DOIPubMedGoogle Scholar
  5. Stamm  WE. Chlamydia trachomatis infections in the adult. In: Holmes KK, Sparling PF, Stamm WE, Piot P, Wasserheit JN, Corey L, et al., editors. Sexually transmitted diseases. New York: McGraw Hill; 2008. p. 575–93.
  6. Bakken  IJ, Skjeldestad  FE, Nordbo  SA. Chlamydia trachomatis infections increase the risk for ectopic pregnancy: A population-based, nested case-control study. Sex Transm Dis. 2007;34:1669. DOIPubMedGoogle Scholar
  7. Hafner  LM, Wilson  DP, Timms  P. Development status and future prospects for a vaccine against Chlamydia trachomatis infection. Vaccine. 2014;32:156371. DOIPubMedGoogle Scholar
  8. Brunham  RC, Rappuoli  R. Chlamydia trachomatis control requires a vaccine. Vaccine. 2013;31:18927. DOIPubMedGoogle Scholar
  9. Geisler  WM, Morrison  SG, Doemland  ML, Iqbal  SM, Su  J, Mancevski  A, Immunoglobulin-specific responses to Chlamydia elementary bodies in individuals with and at risk for genital chlamydial infection. J Infect Dis. 2012;206:183643. DOIPubMedGoogle Scholar
  10. Gottlieb  SL, Low  N, Newman  LM, Bolan  G, Kamb  M, Broutet  N. Toward global prevention of sexually transmitted infections (STIs): the need for STI vaccines. Vaccine. 2014;32:152735. DOIPubMedGoogle Scholar
  11. Chesson  HW, Ekwueme  DU, Saraiya  M, Dunne  EF, Markowitz  LE. The cost-effectiveness of male HPV vaccination in the United States. Vaccine. 2011;29:844350. DOIPubMedGoogle Scholar
  12. Chesson  HW, Ekwueme  DU, Saraiya  M, Markowitz  LE. Cost-effectiveness of human papillomavirus vaccination in the United States. Emerg Infect Dis. 2008;14:24451. DOIPubMedGoogle Scholar
  13. Elbasha  EH, Dasbach  EJ, Insinga  RP. Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis. 2007;13:2841. DOIPubMedGoogle Scholar
  14. Kim  JJ, Goldie  SJ. Health and economic implications of HPV vaccination in the United States. N Engl J Med. 2008;359:82132. DOIPubMedGoogle Scholar
  15. Owusu-Edusei  K Jr, Gift  TL, Chesson  HW, Kent  CK. Investigating the potential public health benefit of jail-based screening and treatment programs for Chlamydia. Am J Epidemiol. 2013;177:46373. DOIPubMedGoogle Scholar
  16. Gift  TL, Gaydos  CA, Kent  CK, Marrazzo  JM, Rietmeijer  CA, Schillinger  JA, The program cost and cost-effectiveness of screening men for Chlamydia to prevent pelvic inflammatory disease in women. Sex Transm Dis. 2008;35(Suppl):S6675. DOIPubMedGoogle Scholar
  17. Brunham  RC, Pourbohloul  B, Mak  S, White  R, Rekart  ML. The unexpected impact of a Chlamydia trachomatis infection control program on susceptibility to reinfection. J Infect Dis. 2005;192:183644. DOIPubMedGoogle Scholar
  18. Price  MJ, Ades  AE, De Angelis  D, Welton  NJ, Macleod  J, Soldan  K, Risk of pelvic inflammatory disease following Chlamydia trachomatis infection: analysis of prospective studies with a multistate model. Am J Epidemiol. 2013;178:48492. DOIPubMedGoogle Scholar
  19. Quinn  TC, Gaydos  C, Shepherd  M, Bobo  L, Hook  EW, Viscidi  R, Epidemiologic and microbiologic correlates of Chlamydia trachomatis infection in sexual partnerships. JAMA. 1996;276:173742. DOIPubMedGoogle Scholar
  20. Garnett  GP, Mertz  KJ, Finelli  L, Levine  WC, St. Louis  ME. The transmission dynamics of gonorrhoea: modelling the reported behaviour of infected patients from Newark, New Jersey. Philos Trans R Soc Lond B Biol Sci. 1999;354:78797. DOIPubMedGoogle Scholar
  21. Van Der Pol  B, Liesenfeld  O, Williams  JA, Taylor  SN, Lillis  RA, Body  BA, Performance of the cobas CT/NG test compared to the Aptima AC2 and Viper CTQ/GCQ assays for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol. 2012;50:22449. DOIPubMedGoogle Scholar
  22. Geisler  WM. Management of uncomplicated Chlamydia trachomatis infections in adolescents and adults: evidence reviewed for the 2006 Centers for Disease Control and Prevention sexually transmitted diseases treatment guidelines. Clin Infect Dis. 2007;44(Suppl 3):S7783. DOIPubMedGoogle Scholar
  23. Owusu-Edusei  K Jr, Nguyen  HT, Gift  TL. Utilization and cost of diagnostic methods for sexually transmitted infection screening among insured American youth, 2008. Sex Transm Dis. 2013;40:35461 . DOIPubMedGoogle Scholar
  24. Owusu-Edusei  K, Roby  TM, Chesson  HW, Gift  TL. Productivity costs of nonviral sexually transmissible infections among patients who miss work to seek medical care: evidence from claims data. Sex Health. 2013;10:4347. DOIPubMedGoogle Scholar
  25. Bureau of Labor Statistics. The editor’s desk. Youth employment and unemployment in July 2010, 2013 [cited 2013 Sep 15].
  26. Blandford  JM, Gift  TL. Productivity losses attributable to untreated chlamydial infection and associated pelvic inflammatory disease in reproductive-aged women. Sex Transm Dis. 2006;33(Suppl):S11721. DOIPubMedGoogle Scholar
  27. Markowitz  LE, Hariri  S, Lin  C, Dunne  EF, Steinau  M, McQuillan  G, Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003–2010. J Infect Dis. 2013;208:38593. DOIPubMedGoogle Scholar
  28. Institute of Medicine. Vaccines for the 21st century: a tool for decisionmaking. Washington (DC): National Academy of Sciences; 2000.
  29. United States Department of Labor. Consumer price indexes—all urban consumers. 2011 [cited 2013 Dec 15].
  30. Blower  SM, Dowlatabadi  H. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model as an example. Int Stat Rev. 1994;62:22943. DOIGoogle Scholar
  31. Chen  MI, Ghani  AC, Edmunds  WJ. A metapopulation modelling framework for gonorrhoea and other sexually transmitted infections in heterosexual populations. J R Soc Interface. 2009;6:77591 . DOIPubMedGoogle Scholar
  32. Grosse  SD. Assessing cost-effectiveness in healthcare: history of the $50,000 per QALY threshold. Expert Rev Pharmacoecon Outcomes Res. 2008;8:165–78.
  33. Gray  RT, Beagley  KW, Timms  P, Wilson  DP. Modeling the impact of potential vaccines on epidemics of sexually transmitted Chlamydia trachomatis infection. J Infect Dis. 2009;199:16808. DOIPubMedGoogle Scholar
  34. Hu  D, Hook  EW III, Goldie  SJ. Screening for Chlamydia trachomatis in women 15 to 29 years of age: a cost-effectiveness analysis. Ann Intern Med. 2004;141:50113. DOIPubMedGoogle Scholar
  35. National Commission for Quality Assurance. Improving quality and patient experience: the state of health care quality. Washington (DC): The Commission; 2013.
  36. Heijne  JCM, Tao  GY, Kent  CK, Low  N. Uptake of regular Chlamydia testing by US women: a longitudinal study. Am J Prev Med. 2010;39:24350. DOIPubMedGoogle Scholar
  37. Finer  LB, Philbin  JM. Sexual initiation, contraceptive use, and pregnancy among young adolescents. Pediatrics. 2013;131:88691. DOIPubMedGoogle Scholar
  38. Althaus  CL, Heijne  JC, Roellin  A, Low  N. Transmission dynamics of Chlamydia trachomatis affect the impact of screening programmes. Epidemics. 2010;2:123–31.
  39. Low  N, Heijne  JC, Kretzschmar  M. Use of mathematical modeling to inform Chlamydia screening policy decisions. J Infect Dis. 2009;199:7678. DOIPubMedGoogle Scholar

Main Article

Page created: May 15, 2015
Page updated: May 15, 2015
Page reviewed: May 15, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.