Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 8—August 2015
Perspective

Drivers of Emerging Infectious Disease Events as a Framework for Digital Detection

Sarah H. Olson1, Corey M. Benedum1, Sumiko R. Mekaru, Nicholas D. Preston, Jonna A.K. Mazet, Damien O. Joly2, and John S. Brownstein2Comments to Author 
Author affiliations: Wildlife Conservation Society, New York, New York, USA (S.H. Olson); University of Wisconsin Madison, Madison, Wisconsin, USA (S.H. Olson); Boston University School of Public Health, Boston (C.M. Benedum); Boston Children’s Hospital, Boston, Massachusetts, USA (C.M. Benedum, S.R. Mekaru, N.D. Preston, J.S. Brownstein); University of California, Davis, California, USA (J.A.K. Mazet); Metabiota, Nanaimo, British Columbia, Canada (D.O. Joly); Harvard Medical School, Boston (J.S. Brownstein)

Main Article

Table

Disease drivers identified in the literature and examples of data availability*

Driver theme (references) Global data examples† Regional data examples†
Human susceptibility to infection (1,2,4)
Vaccine rumor surveillance, product distribution data from manufacturers, self-reported immunization status
US influenza vaccination rates, measles vaccination rates from the Mozambique Health Information System
Climate and weather (1,2,4)
Numerous satellite products, National Oceanic and Atmospheric; Administration, Climatic Research Unit, Center for Sustainability and the Global Environment, vulnerability to climate change
Climate data, social media reports of climate and air pollution effects on Twitter and Sina Weibo
Human demographics and behavior (1,2,4)
Night time lights, Gridded population of the world, mobile phone operator data
National census data products, Twitter, world population
Economic development (1,2,4)
International Monetary Fund, World Bank
National departments of economics
Land use and ecosystem changes (1,2,4)
Global agricultural lands, Center for International Earth Science Information Network, Global Forest Change 2000–2012, Global Forest Watch, global livestock distribution densities
National departments of agriculture, croplands in western Africa, Africa mining digital news reports, IMAZON Deforestation Alert System
Technology and industry (1,2,4)
Digital news, United Nations Global Pulse
NA
Human wildlife interaction (2,4)
Species distribution grids, digital news reports
State-level hunting data
Breakdown of public health measures (1,2,4)
Natural disaster hotspots
News of impending natural disasters (i.e., predicted hurricane landfall)
Poverty and social inequality (1)
Center for International Earth Science Information Network, Global Observatory
National census data
War and famine (1,2,4)
Famine early warning system, digital news and social media
Syria Tracker
Lack of political will (1)
Historical records, Transparency International, Cline Center for Democracy
NA
International travel and commerce (1,2,4) Flight and shipping data Regional distribution data of food products

*The table is purposely not exhaustive but provides a survey of types of available digital data that are associated with different drivers. NA, not applicable.
†See Technical Appendix Table for available references.

Main Article

References
  1. Smolinski  MS, Lederberg  J, Hamburg  MA, editors. Microbial threats to health: emergence, detection, and response. Washington (DC): The National Academies Press; 2003.
  2. Bogich  TL, Chunara  R, Scales  D, Chan  E, Pinheiro  LC, Chmura  AA, Preventing pandemics via international development: a systems approach. PLoS Med. 2012;9:e1001354. DOIPubMedGoogle Scholar
  3. Daszak  P, Cunningham  A, Hyatt  A. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001;78:10316. DOIPubMedGoogle Scholar
  4. Jones  KE, Patel  NG, Levy  MA, Storeygard  A, Balk  D, Gittleman  JL, Global trends in emerging infectious diseases. Nature. 2008;451:9903. DOIPubMedGoogle Scholar
  5. Lederberg  J, Shope  RE, Oaks  SC Jr. Emerging infections: microbial threats to health in the United States. Washington (DC): The National Academies Press; 1992.
  6. Myers  SS, Gaffikin  L, Golden  CD, Ostfeld  RS, Redford  KH, Ricketts  TH, Human health impacts of ecosystem alteration. Proc Natl Acad Sci U S A. 2013;110:1875360. DOIPubMedGoogle Scholar
  7. Patz  JA, Daszak  P, Tabor  GM, Aguirre  AA, Pearl  M, Epstein  J, Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect. 2004;112:10928. DOIPubMedGoogle Scholar
  8. Weiss  RA, McMichael  AJ. Social and environmental risk factors in the emergence of infectious diseases. Nat Med. 2004;10:S706. DOIPubMedGoogle Scholar
  9. Snow  J. On the mode of communication of cholera. 2nd edition. London: John Churchill; 1855.
  10. Lopez  AD, Mathers  CD, Ezzati  M, Jamison  DT, Murray  CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367:174757. DOIPubMedGoogle Scholar
  11. Madoff  LC. ProMED-mail: an early warning system for emerging diseases. Clin Infect Dis. 2004;39:22732. DOIPubMedGoogle Scholar
  12. Mykhalovskiy  E, Weir  L. The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health. Can J Public Health. 2006;97:424.PubMedGoogle Scholar
  13. Brownstein  JS, Freifeld  CC, Reis  BY, Mandl  KD. Surveillance Sans Frontieres: Internet-based emerging infectious disease intelligence and the HealthMap project. PLoS Med. 2008;5:e151. DOIPubMedGoogle Scholar
  14. Collier  N, Doan  S, Kawazoe  A, Goodwin  RM, Conway  M, Tateno  Y, BioCaster: detecting public health rumors with a Web-based text mining system. Bioinformatics. 2008;24:29401. DOIPubMedGoogle Scholar
  15. Steinberger  R, Fuart  F, van der Goot  E, Best  C, von Etter  P, Yangarber  R. Text mining from the web for medical intelligence. In: Fogelman-Soulié F, Perrotta D, Piskorski J, Steinberger R, editors. Amsterdam: IOS Press; 2008. p. 295–310
  16. Daszak  P, Zambrana-Torrelio  C, Bogich  TL, Fernandez  M, Epstein  JH, Murray  KA, Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc Natl Acad Sci U S A. 2013;110(Suppl 1):36818. DOIPubMedGoogle Scholar
  17. Karesh  WB, Dobson  A, Lloyd-Smith  JO, Lubroth  J, Dixon  MA, Bennett  M, Ecology of zoonoses: natural and unnatural histories. Lancet. 2012;380:193645. DOIPubMedGoogle Scholar
  18. Cohen  ML. Changing patterns of infectious disease. Nature. 2000;406:7627. DOIPubMedGoogle Scholar
  19. Bates  M. Observations on the distribution of diurnal mosquitoes in a tropical forest. Ecology. 1944;25:15970. DOIGoogle Scholar
  20. Downs  WG, Pittendrigh  CS. Bromeliad malaria in Trinidad, British West Indies. Am J Trop Med Hyg. 1946;s1–26:4766.
  21. Turner  V, Gantz  JF, Reinsel  D, Minton  S. The digital universe of opportunities: rich data and the increasing value of the Internet of things. Framingham (MA): IDC; 2014.
  22. Report: McKinsey Global Institute. Big data: the next frontier for innovation, competition, and productivity. 2011 [cited 2014 May 15]. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
  23. TeleGeography 2014. Executive summary. Global bandwidth research service. Washington (DC): TeleGeography, Inc; 2014. p. 6.
  24. Keller  M, Blench  M, Tolentino  H, Freifeld  CC, Mandl  KD, Mawudeku  A, Use of unstructured event-based reports for global infectious disease surveillance. Emerg Infect Dis. 2009;15:68995. DOIPubMedGoogle Scholar
  25. Kornai  A. Digital language death. PLoS ONE. 2013;8:e77056. DOIPubMedGoogle Scholar
  26. Scales  D, Zelenev  A, Brownstein  JS. Quantifying the effect of media limitations on outbreak data in a global online web-crawling epidemic intelligence system, 2008–2011. Emerging Health Threats Journal. 2013;6:21621.
  27. Schwind  JS, Wolking  DJ, Brownstein  JS, Consortium  P, Mazet  JAK, Smith  WA. Evaluation of local media surveillance for improved disease recognition and monitoring in global hotspot regions. PLoS ONE. 2014;9:e110236. DOIPubMedGoogle Scholar
  28. Sonricker Hansen  AL, Li  A, Joly  D, Mekaru  S, Brownstein  JS. Digital surveillance: a novel approach to monitoring the illegal wildlife trade. PLoS ONE. 2012;7:e51156. DOIPubMedGoogle Scholar
  29. Pulliam  JR, Epstein  JH, Dushoff  J, Rahman  SA, Bunning  M, Jamaluddin  AA, Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J R Soc Interface. 2012;9:89101. DOIPubMedGoogle Scholar
  30. Preston  ND, Daszak  P, Colwell  RR, Preston  ND, Daszak  P, Colwell  RR. The human environment interface: applying ecosystem concepts to health. Curr Top Microbiol Immunol. 2013;365:83100.PubMedGoogle Scholar
  31. Epstein  JH, Field  HE, Luby  S, Pulliam  JR, Daszak  P. Nipah virus: impact, origins, and causes of emergence. Curr Infect Dis Rep. 2006;8:5965. DOIPubMedGoogle Scholar
  32. Lam  SK, Chua  KB. Nipah virus encephalitis outbreak in Malaysia. Clin Infect Dis. 2002;34(Suppl 2):S4851. DOIPubMedGoogle Scholar
  33. Wilcox  BA, Gubler  DJ. Disease ecology and the global emergence of zoonotic pathogens. Environ Health Prev Med. 2005;10:26372. DOIPubMedGoogle Scholar

Main Article

1These first authors contributed equally to this article.

2These authors were co-senior authors of this article.

Page created: July 14, 2015
Page updated: July 14, 2015
Page reviewed: July 14, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external