Volume 21, Number 8—August 2015
Dispatch
Genomic Assays for Identification of Chikungunya Virus in Blood Donors, Puerto Rico, 2014
Figure 2

Figure 2. Phylogeny of chikungunya virus (CHIKV). (Upper panel) All 188 nearly-full or full genome CHIKV sequences available in the National Center for Biotechnology Information nucleotide database as of March 2015, including the 3 new genomes from Puerto Rico recovered in this study (red boldface) were aligned by using the multiple alignment fast Fourier transform (MAFFT) algorithm, and phylogenetic trees were constructed by using the MrBayes algorithm in the Geneious software package (12). Branch lengths are drawn proportionally to the number of nucleotide substitutions per position, and support values are shown for each node. (Lower panel) Molecular clock analysis of the Southeast Asian/Pacific branch containing the Caribbean sublineage (pink) was performed by using BEAST software (13). Branch lengths are drawn proportionally to the number of years before January 1, 2015, and the number of years is shown for each node. The 3 major lineages and Caribbean-associated sublineage are shown in different colors, and the nodes corresponding to the Caribbean (orange) and Puerto Rico (red) offshoots are highlighted.
References
- Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X. Chikungunya in the Americas. Lancet. 2014;383:514. DOIPubMedGoogle Scholar
- Halstead SB. Reappearance of chikungunya, formerly called dengue, in the Americas. Emerg Infect Dis. 2015;21:557–61.PubMedGoogle Scholar
- Appassakij H, Khuntikij P, Kemapunmanus M, Wutthanarungsan R, Silpapojakul K. Viremic profiles in asymptomatic and symptomatic chikungunya fever: a blood transfusion threat? Transfusion. 2013;53:2567–74. DOIPubMedGoogle Scholar
- Hoad VC, Speers DJ, Keller AJ, Dowse GK, Seed CR, Lindsay MD, First reported case of transfusion-transmitted Ross River virus infection. Med J Aust. 2015;202:267–9. DOIPubMedGoogle Scholar
- Greninger AL, Chen EC, Sittler T, Scheinerman A, Roubinian N, Yu G, A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America. PLoS ONE. 2010;5:e13381.PubMedGoogle Scholar
- Chiu CY, Rouskin S, Koshy A, Urisman A, Fischer K, Yagi S, Microarray detection of human parainfluenzavirus 4 infection associated with respiratory failure in an immunocompetent adult. Clin Infect Dis. 2006;43:e71–6. DOIPubMedGoogle Scholar
- Pfeffer M, Linssen B, Parke MD, Kinney RM. Specific detection of chikungunya virus using a RT-PCR/nested PCR combination. J Vet Med B Infect Dis Vet Public Health. 2002;49:49–54. DOIPubMedGoogle Scholar
- Stramer SL, Linnen JM, Carrick JM, Foster GA, Krysztof DE, Zou S, Dengue viremia in blood donors identified by RNA and detection of dengue transfusion transmission during the 2007 dengue outbreak in Puerto Rico. Transfusion. 2012;52:1657–66. DOIPubMedGoogle Scholar
- Stramer SL, Dodd RY, Chiu CY. Advances in testing technology to ensure transfusion safety–NAT and beyond. [ISBT Science Series]. Vox Sang. 2015;10(Suppl 1):55–64. DOIGoogle Scholar
- Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E, A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res. 2014;24:1180–92. DOIPubMedGoogle Scholar
- Lanciotti RS, Valadere AM. Transcontinental movement of Asian genotype chikungunya virus. Emerg Infect Dis. 2014;20:1400–2. DOIPubMedGoogle Scholar
- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. DOIPubMedGoogle Scholar
- Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73. DOIPubMedGoogle Scholar
- Gallian P, de Lamballerie X, Salez N, Piorkowski G, Richard P, Paturel L, Prospective detection of chikungunya virus in blood donors, Caribbean 2014. Blood. 2014;123:3679–81. DOIPubMedGoogle Scholar
- Farrugia A, Kreil TR. Reflections on the emergence of chikungunya virus in the United States: time to revisit a successful paradigm for the safety of blood-derived therapies. Transfusion. 2015;55:224–6. DOIPubMedGoogle Scholar