Volume 22, Number 3—March 2016
Research
Identification of Novel Zoonotic Activity of Bartonella spp., France
Table 4
Compared genomes (GenBank accession nos.) | B. henselae MVT01 | B. henselae MVT02 | B. henselae MVT03 | B. tribocorum MVT04 | B. doshiae MVT05 | B. schoenbuchensis MVT07 | B. henselae Houston-1 | B. tribocorum CIP 105476 | B. doshiae NCTC 12862 | B. schoenbuchensis m07a |
---|---|---|---|---|---|---|---|---|---|---|
B. henselae MVT01 (HG965802) | *100% | 100% ± 0.05 | 92.90% ± 1.74 | 28.20% ± 2.43 | 28.10% ± 2.43 | 23.80% ± 2.38 | 98.30% ± 0.64 | 28.20% ± 2.43 | 28.00% ± 2.43 | 23.60% ± 2.38 |
B. henselae MVT02 (NZ_LN879429) | 10 | 100% | 93.00% ± 1.72 | 28.20% ± 2.43 | 28.10% ± 2.43 | 23.80% ± 2.39 | 98.30% ± 0.64 | 28.20% ± 2.43 | 28.00% ± 2.43 | 23.60% ± 2.38 |
B. henselae MVT03 (HG969191) | 1,938 | 1,937 | 100% | 28.00% ± 2.43 | 28.00% ± 2.43 | 23.80% ± 2.39 | 92.30% ± 1.82 | 28.00% ± 2.43 | 27.90% ± 2.43 | 23.80% ± 2.39 |
B. tribocorum MVT04 (HG969192–HG969193) | NA | NA | NA | 100% | 26.50% ± 2.42 | 22.70% ± 2.37 | 28.20% ± 2.43 | 99.30% ± 0.33 | 26.60% ± 2.42 | 22.50% ± 2.36 |
B. doshiae MVT05 (CCBL010000001–CCBL010000013) | NA | NA | NA | NA | 100% | 23.60% ± 2.38 | 28.10% ± 2.43 | 26.50% ± 2.42 | 81.40% ± 2.72 | 23.60% ± 2.38 |
B. schoenbuchensis MVT07 (HG977193–HG977197) | NA | NA | NA | NA | NA | 100% | 23.70% ± 2.38 | 22.70% ± 2.37 | 23.60% ± 2.38 | 80.30% ± 2.77 |
B. henselae Houston-1 (NC_005956) | 693 | 698 | 2,093 | NA | NA | NA | 100% | 28.20% ± 2.43 | 28.00% ± 2.43 | 23.60% ± 2.38 |
B. tribocorum CIP 105476 (NC_010161, NC_010160) | NA | NA | NA | 51 | NA | NA | NA | 100% | 26.60% ± 2.42 | 22.60% ± 2.37 |
B. doshiae NCTC 12862 (NZ_JH725094–NZ_JH725100) | NA | NA | NA | NA | >10,000 | NA | NA | NA | 100% | 23.60% ± 2.38 |
B. schoenbuchensis m07a (NZ_KB915627–NZ_KB915629, NZ_CM001846, NZ_CM001845) | NA | NA | NA | NA | NA | >10,000 | NA | NA | NA | 100% |
*All values are percentage identity + SD. Isolates designated MVT01–07 and MVT07 are isolates from humans in France. Gray shading indicates in silico DNA–DNA hybridization values obtained by using Genome-to-Genome Distance Calculator software (http://ggdc.dsmz.de/); darker shading indicates values >70%. Unshaded values are SNP numbers calculated by using SNP identification for strain typing software (23). NA, not applicable because SNP numbers cannot be estimated for distant genomes.
References
- Brouqui P, La Scola B, Roux V, Raoult D. Chronic Bartonella quintana bacteremia in homeless patients. N Engl J Med. 1999;340:184–9. DOIPubMedGoogle Scholar
- Raoult D, Fournier PE, Drancourt M, Marrie TJ, Etienne J, Cosserat J, Diagnosis of 22 new cases of Bartonella endocarditis. Ann Intern Med. 1996;125:646–52. DOIPubMedGoogle Scholar
- Eremeeva ME, Gerns HL, Lydy SL, Goo JS, Ryan ET, Mathew SS, Bacteremia, fever, and splenomegaly caused by a newly recognized Bartonella species. N Engl J Med. 2007;356:2381–7. DOIPubMedGoogle Scholar
- Maurin M, Raoult D. Bartonella (Rochalimaea) quintana infections. Clin Microbiol Rev. 1996;9:273–92 .PubMedGoogle Scholar
- Breitschwerdt EB, Maggi RG, Duncan AW, Nicholson WL, Hegarty BC, Woods CW. Bartonella species in blood of immunocompetent persons with animal and arthropod contact. Emerg Infect Dis. 2007;13:938–41. DOIPubMedGoogle Scholar
- Maggi RG, Ericson M, Mascarelli PE, Bradley JM, Breitschwerdt EB. Bartonella henselae bacteremia in a mother and son potentially associated with tick exposure. Parasit Vectors. 2013;6:101.
- Lantos PM, Maggi RG, Ferguson B, Varkey J, Park LP, Breitschwerdt EB, Detection of Bartonella species in the blood of veterinarians and veterinary technicians: a newly recognized occupational hazard? Vector Borne Zoonotic Dis. 2014;14:563–70. DOIPubMedGoogle Scholar
- Cotté V, Bonnet S, Le RD, Le NE, Chauvin A, Boulouis HJ, Transmission of Bartonella henselae by Ixodes ricinus. Emerg Infect Dis. 2008;14:1074–80. DOIPubMedGoogle Scholar
- Angelakis E, Pulcini C, Waton J, Imbert P, Socolovschi C, Edouard S, Scalp eschar and neck lymphadenopathy caused by Bartonella henselae after tick bite. Clin Infect Dis. 2010;50:549–51 . DOIPubMedGoogle Scholar
- Angelakis E, Billeter SA, Breitschwerdt EB, Chomel BB, Raoult D. Potential for tick-borne bartonelloses. Emerg Infect Dis. 2010;16:385–91. DOIPubMedGoogle Scholar
- Breitschwerdt EB, Linder KL, Day MJ, Maggi RG, Chomel BB, Kempf VA. Koch’s postulates and the pathogenesis of comparative infectious disease causation associated with Bartonella species. J Comp Pathol. 2013;148:115–25. DOIPubMedGoogle Scholar
- Raoult D. Lack of knowledge can anger patients with chronic diseases. Lancet Infect Dis. 2012;12:654–5. DOIPubMedGoogle Scholar
- Chevreux B, Wetter T, Suhai S. Genome sequence assembly using trace signals and additional sequence information. In: Proceedings of the German Conference on Bioinformatics; October 4–6, 1999; Hanover, Germany. Hanover: Computer Science and Biology; 1999. p. 45–56.
- Gao S, Sung WK, Nagarajan N. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J Comput Biol. 2011;18:1681–91. DOIPubMedGoogle Scholar
- Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13:R56. DOIPubMedGoogle Scholar
- Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8. DOIPubMedGoogle Scholar
- Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–6. DOIPubMedGoogle Scholar
- Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. DOIPubMedGoogle Scholar
- Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. DOIPubMedGoogle Scholar
- Eddy SR. Accelerated Profile HMM Searches. PLOS Comput Biol. 2011;7:e1002195. DOIPubMedGoogle Scholar
- The Uniprot Consortium. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 2011;39:D214–9. DOIPubMedGoogle Scholar
- Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278:631–7 . DOIPubMedGoogle Scholar
- Vijaya Satya R, Zavaljevski N, Reifman DJ. SNIT: SNP identification for strain typing. Source Code Biol Med. 2011;6:14. DOIPubMedGoogle Scholar
- Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60. DOIPubMedGoogle Scholar
- La Scola B, Zeaiter Z, Khamis A, Raoult D. Gene-sequence-based criteria for species definition in bacteriology: the Bartonella paradigm. Trends Microbiol. 2003;11:318–21. DOIPubMedGoogle Scholar
- Seubert A, Falch C, Birtles RJ, Schulein R, Dehio C. Characterization of the cryptic plasmid pBGR1 from Bartonella grahamii and construction of a versatile Escherichia coli–Bartonella spp. shuttle cloning vector. Plasmid. 2003;49:44–52. DOIPubMedGoogle Scholar
- Mullins KE, Hang J, Jiang J, Leguia M, Kasper MR, Maguina C, Molecular typing of “Candidatus Bartonella ancashi,” a new human pathogen causing verruga peruana. J Clin Microbiol. 2013;51:3865–8. DOIPubMedGoogle Scholar
- Jacomo V, Kelly PJ, Raoult D. Natural history of Bartonella infections (an exception to Koch's postulate). Clin Diagn Lab Immunol. 2002;9:8–18 .PubMedGoogle Scholar
- Vayssier-Taussat M, Le RD, Deng HK, Biville F, Cescau S, Danchin A, The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. PLoS Pathog. 2010;6:e1000946. DOIPubMedGoogle Scholar
- Mascarelli PE, Iredell JR, Maggi RG, Weinberg G, Breitschwerdt EB. Bartonella species bacteremia in two patients with epithelioid hemangioendothelioma. J Clin Microbiol. 2011;49:4006–12. DOIPubMedGoogle Scholar
- Maggi RG, Mascarelli PE, Pultorak EL, Hegarty BC, Bradley JM, Mozayeni BR, Bartonella spp. bacteremia in high-risk immunocompetent patients. Diagn Microbiol Infect Dis. 2011;71:430–7. DOIPubMedGoogle Scholar
- Pultorak EL, Maggi RG, Mascarelli PE, Breitschwerdt EB. Serial testing from a 3-day collection period by use of the Bartonella Alphaproteobacteria growth medium platform may enhance the sensitivity of Bartonella species detection in bacteremic human patients. J Clin Microbiol. 2013;51:1673–7. DOIPubMedGoogle Scholar
- Breitschwerdt EB, Maggi RG, Lantos PM, Woods CW, Hegarty BC, Bradley JM. Bartonella vinsonii subsp. berkhoffii and Bartonella henselae bacteremia in a father and daughter with neurological disease. Parasit Vectors. 2010;3:29.
- Maggi RG, Mozayeni BR, Pultorak EL, Hegarty BC, Bradley JM, Correa M, Bartonella spp. bacteremia and rheumatic symptoms in patients from Lyme disease-endemic region. Emerg Infect Dis. 2012;18:783–91.PubMedGoogle Scholar
- Breitschwerdt EB, Maggi RG, Robert MB, Hegarty BC, Bradley JM, Mascarelli PE. PCR amplification of Bartonella koehlerae from human blood and enrichment blood cultures. Parasit Vectors. 2010;3:76.
- Maggi RG, Kosoy M, Mintzer M, Breitschwerdt EB. Isolation of “Candidatus Bartonella melophagi” from human blood. Emerg Infect Dis. 2009;15:66–8 . DOIPubMedGoogle Scholar
- Rolain JM, Rousset E, La Scola B, Duquesnel R, Raoult D. Bartonella schoenbuchensis isolated from the blood of a French cow. Ann N Y Acad Sci. 2003;990:236–8. DOIPubMedGoogle Scholar
- Ko S, Kim SJ, Kang JG, Won S, Lee H, Shin NS, Molecular detection of Bartonella grahamii and B. schoenbuchensis-related species in Korean water deer (Hydropotes inermis argyropus). Vector Borne Zoonotic Dis. 2013;13:415–8. DOIPubMedGoogle Scholar
- Kosoy M, Bai Y, Sheff K, Morway C, Baggett H, Maloney SA, Identification of Bartonella infections in febrile human patients from Thailand and their potential animal reservoirs. Am J Trop Med Hyg. 2010;82:1140–5. DOIPubMedGoogle Scholar
- Angelakis E, Billeter SA, Breitschwerdt EB, Chomel BB, Raoult D. Potential for tick-borne bartonelloses. Emerg Infect Dis. 2010;16:385–91. DOIPubMedGoogle Scholar
Page created: February 18, 2016
Page updated: February 18, 2016
Page reviewed: February 18, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.