Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 3—March 2016

Effects of Response to 2014–2015 Ebola Outbreak on Deaths from Malaria, HIV/AIDS, and Tuberculosis, West Africa

Alyssa S. Parpia1, Martial L. Ndeffo-Mbah1Comments to Author , Natasha S. Wenzel, and Alison P. Galvani
Author affiliations: Yale School of Public Health, New Haven, Connecticut, USA

Main Article

Table 1

Parameter estimates and distributions for models of malaria in Guinea, Liberia, and Sierra Leone, measuring impact of response to the 2014–2015 Ebola outbreak on deaths*

Malaria-related parameter estimates Value Reference
Probability of death without treatment, range
Uncomplicated malaria 0.005–0.02 (15)
Severe malaria
Probability of death while undergoing treatment, range
Uncomplicated malaria 0.00024–0.00112 (16)
Severe malaria
Probability of progressing from uncomplicated to severe malaria given no treatment 0.03–0.13 (13,18)
Proportion of case-patients with fever attributable to Malaria 0.01–0.11 (18,19)
Probability of spontaneous recovery from uncomplicated malaria 0.10–0.20 (18)
Probability of treatment for severe malaria
Age-specific probabilities†
Development of fever within 2 weeks (β distribution) (21)
<1 y 376/1,453
1–2 y 476/1,296
2–3 y 406/1,192
3–4 y 337/1,253
4–5 y 301/1,252
Receiving treatment for malaria before Ebola outbreak
<1 y 0.128–0.221 (21)
1–2 y 0.194–0.334
2–3 y 0.159–0.260
3–4 y 0.198–0.309
4–5 y 0.163–0.271
Development of fever within 2 weeks (β distribution) (22)
<1 y 391/1,333
1–2 y 429/1,272
2–3 y 309/1,085
3–4 y 327/1,198
4–5 y 273/1,159
Receiving treatment for malaria before Ebola outbreak
<1 y 0.296–0.381 (22)
1–2 y 0.461–0.603
2–3 y 0.393–0.538
3–4 y 0.449–0.618
4–5 y 0.521–0.624
Sierra Leone
Development of fever within 2 weeks (β distribution) (23)
<1 y 576/2,406
1–2 y 706/2,169
2–3 y 570/2,011
3–4 y 493/2,237
4–5 y 406/1,991
Receiving treatment for malaria before Ebola outbreak (23)
<1 y 0.301–0.395
1–2 y 0.376–0.502
2–3 y 0.354–0.484
3–4 y 0.395–0.543
4–5 y 0.376–0.501

*See Technical Appendix Table 1 for HIV/AIDS and tuberculosis parameter estimates and distributions.
†For fever, values are no. persons in that age group that had a fever 2 weeks before the survey/total no. persons in age group.

Main Article

  1. United Nations Development Programme. Assessing the socio-economic impacts of Ebola Virus Disease in Guinea, Liberia and Sierra Leone: The Road to Recovery. Addis Ababa, Ethiopia: The Programme; 2014.
  2. Piot  P, Muyembe  J-J, Edmunds  WJ. Ebola in West Africa: from disease outbreak to humanitarian crisis. Lancet Infect Dis. 2014;14:10345. DOIPubMedGoogle Scholar
  3. Takahashi  S, Metcalf  CJE, Ferrari  MJ, Moss  WJ, Truelove  SA, Tatem  AJ, Reduced vaccination and the risk of measles and other childhood infections post-Ebola. Science. 2015;347:12402. DOIPubMedGoogle Scholar
  4. Walker  PGT, White  MT, Griffin  JT, Reynolds  A, Ferguson  NM, Ghani  AC. Malaria morbidity and mortality in Ebola-affected countries caused by decreased health-care capacity, and the potential effect of mitigation strategies: a modelling analysis. Lancet Infect Dis. 2015;15:82532 . DOIPubMedGoogle Scholar
  5. Murray  CJL, Ortblad  KF, Guinovart  C, Lim  SS, Wolock  TM, Roberts  DA, Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:100570.PubMedGoogle Scholar
  6. United States Agency for International Development. President’s Malaria Initiative: FY 2015 Guinea malaria operational plan. 2015 [cited 2015 Jun 2].
  7. Ministry of Health and Social Welfare. Liberia malaria indicator survey 2011. NMCP; LISGIS; ICF International; 2011 [cited 2015 May 13].
  8. National Malaria Control Program. Statistics Sierra Leone; College of Medicine and Allied Health Services University of Sierra Leone; Catholic Relief Services; ICF International. Sierra Leone: Malaria Indicator Survey 2013 (MIS). NMCP; SSL; CRS; ICF International; 2013 [cited 2015 Jun 2].
  9. Joint United Nations Programme on HIV/AIDS. Liberia: HIV and AIDS estimates. Geneva: The Programme; 2013.
  10. World Health Organization. Global Health Observatory Data Repository: Statistics Summary (2002-present) 2013 [cited 2015 Jun 2].
  11. World Health Organization. Tuberculosis country profiles [cited 2015 Jun 2].
  12. Law  S, Benedetti  A, Oxlade  O, Schwartzman  K, Menzies  D. Comparing cost-effectiveness of standardised tuberculosis treatments given varying drug resistance. Eur Respir J. 2014;43:56681. DOIPubMedGoogle Scholar
  13. Lubell  Y, Staedke  SG, Greenwood  BM, Kamya  MR, Molyneux  M, Newton  PN, Likely health outcomes for untreated acute febrile illness in the tropics in decision and economic models; a Delphi survey. PLoS One. 2011;6:e17439 [cited 2015 Jun 2].
  14. Stover  J, Bollinger  L, Avila  C. Estimating the effects and costs of changing guidelines for ART eligibility. Geneva: World Health Organization. 2009;(Sep):1–18 [cited 2015 Jun 2].
  15. Rafael  ME, Taylor  T, Magill  A, Lim  Y-W, Girosi  F, Allan  R. Reducing the burden of childhood malaria in Africa: the role of improved. Nature. 2006;444(Suppl 1):3948. DOIPubMedGoogle Scholar
  16. Thwing  J, Eisele  TP, Steketee  RW. Protective efficacy of malaria case management and intermittent preventive treatment for preventing malaria mortality in children: a systematic review for the Lives Saved Tool. BMC Public Health. 2011;11(Suppl 3):S14. DOIPubMedGoogle Scholar
  17. von Seidlein  L, Olaosebikan  R, Hendriksen  ICE, Lee  SJ, Adedoyin  OT, Agbenyega  T, Predicting the clinical outcome of severe falciparum malaria in African children: findings from a large randomized trial. Clin Infect Dis. 2012;54:108090. DOIPubMedGoogle Scholar
  18. Mori  AT, Ngalesoni  F, Norheim  OF, Robberstad  B. Cost-effectiveness of dihydroartemisinin-piperaquine compared with artemether-lumefantrine for treating uncomplicated malaria in children at a district hospital in Tanzania. Malar J. 2014;•••:13363.PubMedGoogle Scholar
  19. Smith  T, Schellenberg  JA, Hayes  R. Attributable fraction estimates and case definitions for malaria in endemic areas. Stat Med. 1994;13:234558. DOIPubMedGoogle Scholar
  20. de Savigny  D, Mayombana  C, Mwageni  E, Masanja  H, Minhaj  A, Mkilindi  Y, Care-seeking patterns for fatal malaria in Tanzania. Malar J. 2004;3:27. DOIPubMedGoogle Scholar
  21. Institut National de la Statistique de Guinée, Measure DHS ICF International. Enquête Démographique et de Santé et à Indicateurs Multiples (EDS-MICS 2012)—Guinée 2012. Conakry, Guinée; 2013 [cited 2015 Jun 2].
  22. Liberia Institute of Statistics and Geo-Information Services (LISGIS). Liberia Demographic and Health Survey 2013. 2014 [cited 2015 Jun 2].
  23. Statistics Sierra Leone, Ministry of Health and Sanitation, ICF International. Sierra Leone demographic and health survey 2013. Freetown, Sierra Leone, and Rockville (Maryland, USA); 2014. p. 36.
  24. Institute of Health Metrics and Evaluation. Global Health Data Exchange. Causes of death visualization. University of Washington; 2014 [cited 2015 Jun 2].
  25. World Health Organization. Situation report E—4 March 2015 [cited 2015 Jun 2].
  26. Dye  C, Williams  BG. Criteria for the control of drug-resistant tuberculosis. Proc Natl Acad Sci U S A. 2000;97:81805. DOIPubMedGoogle Scholar
  27. Eaton  JW, Menzies  NA, Stover  J, Cambiano  V, Chindelevitch  L, Cori  A, Health benefits, costs, and cost-effectiveness of earlier eligibility for adult antiretroviral therapy and expanded treatment coverage: A combined analysis of 12 mathematical models. Lancet Glob Health. 2014;2:e23–34.
  28. Ndeffo Mbah  ML, Parikh  S, Galvani  AP. Comparing the impact of artemisinin-based combination therapies on malaria transmission in sub-saharan Africa. Am J Trop Med Hyg. 2015;92:55560. DOIPubMedGoogle Scholar
  29. Griffin  JT, Ferguson  NM, Ghani  AC. Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa. Nat Commun. 2014;5:3136.
  30. Ansah  EK, Narh-Bana  S, Affran-Bonful  H, Bart-Plange  C, Cundill  B, Gyapong  M, The impact of providing rapid diagnostic malaria tests on fever management in the private retail sector in Ghana: a cluster randomized trial. BMJ. 2015;350:h1019. DOIPubMedGoogle Scholar
  31. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. Geneva. Organization. 2013;•••:1272.
  32. Mills  EJ, Bakanda  C, Birungi  J, Mwesigwa  R, Chan  K, Ford  N, Mortality by baseline CD4 cell count among HIV patients initiating antiretroviral therapy: evidence from a large cohort in Uganda. AIDS. 2011;25:8515. DOIPubMedGoogle Scholar
  33. World Health Organization. Treatment of tuberculosis: guidelines, 4th ed. Geneva: The Organization; 2010.
  34. World Health Organization. Ebola situation report—31 December 2014. 2014 [cited 2015 Jun 2].
  35. Evans  DK, Popova  A. West African Ebola crisis and orphans. Lancet. 2015;385:9456. DOIPubMedGoogle Scholar
  36. Helleringer  S, Noymer  A. Magnitude of Ebola relative to other causes of death in Liberia, Sierra Leone, and Guinea. Lancet Glob Health. 2015;3:e255–6.
  37. Ndawinz  JDA, Mohamed  C, Diallo  MSK, Sidibé  CT, Eric  D. Prevention of HIV spread during the Ebola outbreak in Guinea. Lancet. 2015;385:1393. DOIPubMedGoogle Scholar
  38. Hotez  PJ. Neglected Tropical Diseases in the Ebola-affected Countries of West Africa. PLoS Negl Trop Dis. 2015;9:e0003671. DOIPubMedGoogle Scholar
  39. Grépin  KA. International donations to the Ebola virus outbreak: too little, too late? BMJ. 2015;350:h376. DOIPubMedGoogle Scholar
  40. Fallah  M, Skrip  LA, d’Harcourt  E, Galvani  AP. Strategies to prevent future Ebola epidemics. Lancet. 2015;386:131. DOIPubMedGoogle Scholar

Main Article

1These joint first authors contributed equally to this article.

Page created: February 18, 2016
Page updated: February 18, 2016
Page reviewed: February 18, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.