Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 5—May 2016
Research

Genetic Characterization of Archived Bunyaviruses and their Potential for Emergence in Australia

Bixing Huang, Cadhla Firth, Daniel Watterson, Richard Allcock, Agathe M.G. Colmant, Jody Hobson-Peters, Peter D. Kirkland, Glen Hewitson, Jamie McMahon, Sonja Hall-Mendelin, Andrew F. van den Hurk, and David WarrilowComments to Author 
Author affiliations: Author affiliations: Queensland Health Forensic and Scientific Services, Brisbane, Queensland, Australia (B. Huang, G. Hewitson, J. McMahon, S. Hall-Mendelin, A.F. van den Hurk, D. Warrilow); Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia (C. Firth); The University of Queensland, St. Lucia, Queensland, Australia (D. Watterson, A.M.G. Colmant, J. Hobson-Peters); University of Western Australia, Nedlands, Western Australia, Australia (R. Allcock); QEII Medical Centre, Nedlands (R. Allcock); Elizabeth Macarthur Agriculture Institute, Menangle, New South Wales, Australia (P. Kirkland)

Main Article

Figure 5

Taggert virus RNA-dependent RNA polymerase showing a viral homologue (vOTU) of the ovarian tumor domain. The alignment of nairoviruses shows a consensus sequence, which corresponds to the vOTU domain (24–26), which has been linked to virulence. The highly conserved residues, which include the catalytic triad residues, are indicated with a black box below each column.

Figure 5. Taggert virus RNA-dependent RNA polymerase showing a viral homologue (vOTU) of the ovarian tumor domain. The alignment of nairoviruses shows a consensus sequence, which corresponds to the vOTU domain (2426), which has been linked to virulence. The highly conserved residues, which include the catalytic triad residues, are indicated with a black box below each column.

Main Article

References
  1. Plyusnin  A, Beaty  BJ, Elliot  RM, Goldbach  R, Kormelink  R, Lundkvist  A, Bunyaviridae. In: King AMQ, Adams MJ, Carsten EB, Lefkowitz EJ, editors. Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. San Diego (CA): Elsevier Academic Press; 2012. p. 725–41.
  2. Schmaljohn  CSN, Fields  ST. Virology. In: Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1741–89.
  3. Boughton  CR, Hawkes  RA, Naim  HM. Arbovirus infection in humans in NSW: seroprevalence and pathogenicity of certain Australian bunyaviruses. Aust N Z J Med. 1990;20:515 . DOIPubMedGoogle Scholar
  4. Doherty  RL. Studies of Aborigines at Aurukun and Weipa Missions, North Queensland. Aust Paediatr J. 1967;3:2138.
  5. Doherty  RL, Whitehead  RH, Wetters  EJ, Gorman  BM, Carley  JG. A survey of antibody to 10 arboviruses (Koongol group, Mapputta group and ungrouped) isolated in Queensland. Trans R Soc Trop Med Hyg. 1970;64:74853. DOIPubMedGoogle Scholar
  6. Vale  TG, Carter  IW, McPhie  KA, James  GS, Cloonan  MJ. Human arbovirus infections along the south coast of New South Wales. Aust J Exp Biol Med Sci. 1986;64:3079. DOIPubMedGoogle Scholar
  7. Centers for Disease Control and Prevention. Arbovirus catalogue. June 2015 [cited 2016 Mar 9]. https://wwwn.cdc.gov/Arbocat/Default.aspx
  8. Wang  J, Selleck  P, Yu  M, Ha  W, Rootes  C, Gales  R, Novel phlebovirus with zoonotic potential isolated from ticks, Australia. Emerg Infect Dis. 2014;20:10403. DOIPubMedGoogle Scholar
  9. Coffey  LL, Page  BL, Greninger  AL, Herring  BL, Russell  RC, Doggett  SL, Enhanced arbovirus surveillance with deep sequencing: identification of novel rhabdoviruses and bunyaviruses in Australian mosquitoes. Virology. 2014;448:14658. DOIPubMedGoogle Scholar
  10. Major  L, Linn  ML, Slade  RW, Schroder  WA, Hyatt  AD, Gardner  J, Ticks associated with Macquarie Island penguins carry arboviruses from four genera. PLoS ONE. 2009;4:e4375. DOIPubMedGoogle Scholar
  11. Doherty  RL, Carley  JG, Murray  MD, Main  AJ Jr, Kay  BH, Domrow  R. Isolation of arboviruses (Kemerovo group, Sakhalin group) from Ixodes uriae collected at Macquarie Island, Southern Ocean. Am J Trop Med Hyg. 1975;24:5216 .PubMedGoogle Scholar
  12. Doherty  RL, Whitehead  RH, Wetters  EJ, Gorman  BM. Studies of the epidemiology of arthropod-borne virus infections at Mitchell River Mission, Cape York Peninsula, North Queensland. II. Arbovirus infections of mosquitoes, man and domestic fowls, 1963–1966. Trans R Soc Trop Med Hyg. 1968;62:4308. DOIPubMedGoogle Scholar
  13. Gard  G, Marshall  ID, Woodroofe  GM. Annually recurrent epidemic polyarthritis and Ross River virus activity in a coastal area of New South Wales. II. Mosquitoes, viruses, and wildlife. Am J Trop Med Hyg. 1973;22:55160 .PubMedGoogle Scholar
  14. Clarke  JA, Marshall  ID, Gard  G. Annually recurrent epidemic polyarthritis and Ross River virus activity in a coastal area of New South Wales. I. Occurrence of the disease. Am J Trop Med Hyg. 1973;22:54350 .PubMedGoogle Scholar
  15. van den Hurk  AF, Nisbet  DJ, Foley  PN, Ritchie  SA, Mackenzie  JS, Beebe  NW. Isolation of arboviruses from mosquitoes (Diptera: Culicidae) collected from the Gulf Plains region of northwest Queensland, Australia. J Med Entomol. 2002;39:78692. DOIPubMedGoogle Scholar
  16. Hall-Mendelin  S, Ritchie  SA, Johansen  CA, Zborowski  P, Cortis  G, Dandridge  S, Exploiting mosquito sugar feeding to detect mosquito-borne pathogens. Proc Natl Acad Sci U S A. 2010;107:112559. DOIPubMedGoogle Scholar
  17. Warrilow  D, Watterson  D, Hall  RA, Davis  SS, Weir  R, Kurucz  N, A new species of mesonivirus from the Northern Territory, Australia. PLoS ONE. 2014;9:e91103. DOIPubMedGoogle Scholar
  18. Kearse  M, Moir  R, Wilson  A, Stones-Havas  S, Cheung  M, Sturrock  S, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:16479. DOIPubMedGoogle Scholar
  19. Talavera  G, Castresana  J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:56477. DOIPubMedGoogle Scholar
  20. Guindon  S, Dufayard  JF, Lefort  V, Anisimova  M, Hordijk  W, Gascuel  O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:30721. DOIPubMedGoogle Scholar
  21. Delport  W, Poon  AF, Frost  SD, Kosakovsky Pond  SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26:24557. DOIPubMedGoogle Scholar
  22. Appuhamy  RD, Tent  J, Mackenzie  JS. Toponymous diseases of Australia. Med J Aust. 2010;193:6426 .PubMedGoogle Scholar
  23. Van Den Hurk  AF, Johansen  CA, Zborowski  P, Phillips  DA, Pyke  AT, Mackenzie  JS, Flaviviruses isolated from mosquitoes collected during the first recorded outbreak of Japanese encephalitis virus on Cape York Peninsula, Australia. Am J Trop Med Hyg. 2001;64:12530 .PubMedGoogle Scholar
  24. Capodagli  GC, Deaton  MK, Baker  EA, Lumpkin  RJ, Pegan  SD. Diversity of ubiquitin and ISG15 specificity among nairoviruses’ viral ovarian tumor domain proteases. J Virol. 2013;87:381527. DOIPubMedGoogle Scholar
  25. Capodagli  GC, McKercher  MA, Baker  EA, Masters  EM, Brunzelle  JS, Pegan  SD. Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bonded ubiquitin. J Virol. 2011;85:362130. DOIPubMedGoogle Scholar
  26. Frias-Staheli  N, Giannakopoulos  NV, Kikkert  M, Taylor  SL, Bridgen  A, Paragas  J, Ovarian tumor domain–containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe. 2007;2:40416. DOIPubMedGoogle Scholar
  27. Kay  BH, Boyd  AM, Ryan  PA, Hall  RA. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia. Am J Trop Med Hyg. 2007;76:41723 .PubMedGoogle Scholar
  28. Muller  MJ, Murray  MD, Edwards  JA. Blood-sucking midges and mosquitoes feeding on mammals at Beatrice Hill, N.T. Aust J Zool. 1981;29:57388. DOIGoogle Scholar
  29. Kay  BH, Carley  JG, Filippich  C. The multiplication of Queensland and New Guinean arboviruses in Culex annulirostris Skuse and Aedes vigilax (Skuse) (Diptera: Culicidae). J Med Entomol. 1975;12:27983. DOIPubMedGoogle Scholar
  30. St George  TD, Doherty  RL, Carley  JG, Filippich  C, Brescia  A, Casals  J, The isolation of arboviruses including a new flavivirus and a new bunyavirus from Ixodes (Ceratixodes) uriae (Ixodoidea: Ixodidae) collected at Macquarie Island, Australia, 1975–1979. Am J Trop Med Hyg. 1985;34:40612 .PubMedGoogle Scholar
  31. Dietrich  M, Kempf  F, Boulinier  T, McCoy  KD. Tracing the colonization and diversification of the worldwide seabird ectoparasite Ixodes uriae. Mol Ecol. 2014;23:3292305. DOIPubMedGoogle Scholar
  32. Coffey  LL, Forrester  N, Tsetsarkin  K, Vasilakis  N, Weaver  SC. Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiol. 2013;8:15576. DOIPubMedGoogle Scholar
  33. Gauci  PJ, McAllister  J, Mitchell  IR, Boyle  DB, Bulach  DM, Weir  RP, Genomic characterisation of three Mapputta group viruses, a serogroup of Australian and Papua New Guinean bunyaviruses associated with human disease. PLoS ONE. 2015;10:e0116561 and. DOIPubMedGoogle Scholar

Main Article

Page created: April 13, 2016
Page updated: April 13, 2016
Page reviewed: April 13, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external