Volume 23, Number 10—October 2017
Dispatch
Molecular Tracing to Find Source of Protracted Invasive Listeriosis Outbreak, Southern Germany, 2012–2016
Figure 2
![Minimum spanning tree estimating the phylogenetic relationships among outbreak and nonoutbreak Listeria monocytogenes isolates from humans and from food products, southern Germany, 2012–2016. We conducted bioinformatics analyses using the Ridom SeqSphere+ software version 3.1.0-2016-01 (Ridom GmbH, Münster, Germany). The core-genome multilocus sequence typing scheme for whole-genome sequencing–based typing of L. monocytogenes relies on a set of 1,701 target genes (alleles) that are present in &g](/eid/images/16-1623-F2.jpg)
Figure 2. Minimum spanning tree estimating the phylogenetic relationships among outbreak and nonoutbreak Listeria monocytogenes isolates from humans and from food products, southern Germany, 2012–2016. We conducted bioinformatics analyses using the Ridom SeqSphere+ software version 3.1.0-2016-01 (Ridom GmbH, Münster, Germany). The core-genome multilocus sequence typing scheme for whole-genome sequencing–based typing of L. monocytogenes relies on a set of 1,701 target genes (alleles) that are present in >99% of the known genomes of the species (7). Each circle represents an allelic profile. The numbers on the connecting lines illustrate the number of differing alleles in a pairwise comparison. Closely related genotypes (<10 allele difference) designated a cluster type and are indicated with bold red numbers. CT, cluster type; PFGE, pulsed-field gel electrophoresis.
References
- Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991;55:476–511.PubMedGoogle Scholar
- Schuchat A, Swaminathan B, Broome CV. Epidemiology of human listeriosis. Clin Microbiol Rev. 1991;4:169–83. DOIPubMedGoogle Scholar
- Robert Koch-Institute. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2016. Berlin: The Institute; 2017 [cited 2017 Mar 1]. http://www.rki.de/jahrbuch
- Preußel K, Milde-Busch A, Schmich P, Wetzstein M, Stark K, Werber D. Risk factors for sporadic non-pregnancy associated listeriosis in Germany—immunocompromised patients and frequently consumed ready-to-eat products. PLoS One. 2015;10:e0142986. DOIPubMedGoogle Scholar
- Werber D, Hille K, Frank C, Dehnert M, Altmann D, Müller-Nordhorn J, et al. Years of potential life lost for six major enteric pathogens, Germany, 2004-2008. Epidemiol Infect. 2013;141:961–8. DOIPubMedGoogle Scholar
- Ruppitsch W, Prager R, Halbedel S, Hyden P, Pietzka A, Huhulescu S, et al. Ongoing outbreak of invasive listeriosis, Germany, 2012 to 2015. Euro Surveill. 2015;20:pii=30094. DOIPubMedGoogle Scholar
- Ruppitsch W, Pietzka A, Prior K, Bletz S, Fernandez HL, Allerberger F, et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J Clin Microbiol. 2015;53:2869–76. DOIPubMedGoogle Scholar
- Halpin JL, Garrett NM, Ribot EM, Graves LM, Cooper KL. Re-evaluation, optimization, and multilaboratory validation of the PulseNet-standardized pulsed-field gel electrophoresis protocol for Listeria monocytogenes. Foodborne Pathog Dis. 2010;7:293–8. DOIPubMedGoogle Scholar
- Félix B, Dao TT, Lombard B, Asséré A, Brisabois A, Roussel S. The use of pulsed field gel electrophoresis in Listeria monocytogenes sub-typing—harmonization at the European Union level. In: Magdeldin S, editor. Gel electrophoresis—principles and basics. Rijeka (Croatia): In Tech; 2012. p. 241–54.