Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 10—October 2017
Dispatch

Molecular Tracing to Find Source of Protracted Invasive Listeriosis Outbreak, Southern Germany, 2012–2016

Sylvia KletaComments to Author , Jens Andre Hammerl, Ralf Dieckmann, Burkhard Malorny, Maria Borowiak, Sven Halbedel, Rita Prager, Eva Trost, Antje Flieger, Hendrik Wilking, Sabine Vygen-Bonnet, Ulrich Busch, Ute Messelhäußer, Sabine Horlacher, Katharina Schönberger, Dorothee Lohr, Elisabeth Aichinger, Petra Luber, Andreas Hensel, and Sascha Al Dahouk
Author affiliations: German Federal Institute for Risk Assessment, Berlin, Germany (S. Kleta, J.A. Hammerl, R. Dieckmann, B. Malorny, M. Borowiak, A. Hensel, S. Al Dahouk); Robert Koch Institute, Berlin (H. Wilking, S. Vygen-Bonnet); Robert Koch Institute, Wernigerode, Germany (S. Halbedel, R. Prager, E. Trost, A. Flieger); Bavarian Health and Food Safety Authority, Oberschleißheim, Germany (U. Busch, U. Messelhäußer, K. Schönberger); Chemical and Veterinary Investigatory Office, Stuttgart, Germany (S. Horlacher); Baden-Württemberg State Health Office, Stuttgart (D. Lohr, E. Aichinger); Federal Office of Consumer Protection and Food Safety, Berlin (P. Luber)

Main Article

Figure 2

Minimum spanning tree estimating the phylogenetic relationships among outbreak and nonoutbreak Listeria monocytogenes isolates from humans and from food products, southern Germany, 2012–2016. We conducted bioinformatics analyses using the Ridom SeqSphere+ software version 3.1.0-2016-01 (Ridom GmbH, Münster, Germany). The core-genome multilocus sequence typing scheme for whole-genome sequencing–based typing of L. monocytogenes relies on a set of 1,701 target genes (alleles) that are present in &g

Figure 2. Minimum spanning tree estimating the phylogenetic relationships among outbreak and nonoutbreak Listeria monocytogenes isolates from humans and from food products, southern Germany, 2012–2016. We conducted bioinformatics analyses using the Ridom SeqSphere+ software version 3.1.0-2016-01 (Ridom GmbH, Münster, Germany). The core-genome multilocus sequence typing scheme for whole-genome sequencing–based typing of L. monocytogenes relies on a set of 1,701 target genes (alleles) that are present in >99% of the known genomes of the species (7). Each circle represents an allelic profile. The numbers on the connecting lines illustrate the number of differing alleles in a pairwise comparison. Closely related genotypes (<10 allele difference) designated a cluster type and are indicated with bold red numbers. CT, cluster type; PFGE, pulsed-field gel electrophoresis.

Main Article

References
  1. Farber  JM, Peterkin  PI. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991;55:476511.PubMedGoogle Scholar
  2. Schuchat  A, Swaminathan  B, Broome  CV. Epidemiology of human listeriosis. Clin Microbiol Rev. 1991;4:16983. DOIPubMedGoogle Scholar
  3. Robert Koch-Institute. Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2016. Berlin: The Institute; 2017 [cited 2017 Mar 1]. http://www.rki.de/jahrbuch
  4. Preußel  K, Milde-Busch  A, Schmich  P, Wetzstein  M, Stark  K, Werber  D. Risk factors for sporadic non-pregnancy associated listeriosis in Germany—immunocompromised patients and frequently consumed ready-to-eat products. PLoS One. 2015;10:e0142986. DOIPubMedGoogle Scholar
  5. Werber  D, Hille  K, Frank  C, Dehnert  M, Altmann  D, Müller-Nordhorn  J, et al. Years of potential life lost for six major enteric pathogens, Germany, 2004-2008. Epidemiol Infect. 2013;141:9618. DOIPubMedGoogle Scholar
  6. Ruppitsch  W, Prager  R, Halbedel  S, Hyden  P, Pietzka  A, Huhulescu  S, et al. Ongoing outbreak of invasive listeriosis, Germany, 2012 to 2015. Euro Surveill. 2015;20:pii=30094. DOIPubMedGoogle Scholar
  7. Ruppitsch  W, Pietzka  A, Prior  K, Bletz  S, Fernandez  HL, Allerberger  F, et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J Clin Microbiol. 2015;53:286976. DOIPubMedGoogle Scholar
  8. Halpin  JL, Garrett  NM, Ribot  EM, Graves  LM, Cooper  KL. Re-evaluation, optimization, and multilaboratory validation of the PulseNet-standardized pulsed-field gel electrophoresis protocol for Listeria monocytogenes. Foodborne Pathog Dis. 2010;7:2938. DOIPubMedGoogle Scholar
  9. Félix  B, Dao  TT, Lombard  B, Asséré  A, Brisabois  A, Roussel  S. The use of pulsed field gel electrophoresis in Listeria monocytogenes sub-typing—harmonization at the European Union level. In: Magdeldin S, editor. Gel electrophoresis—principles and basics. Rijeka (Croatia): In Tech; 2012. p. 241–54.

Main Article

Page created: September 18, 2017
Page updated: September 18, 2017
Page reviewed: September 18, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external