Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 7—July 2017
CME ACTIVITY - Research

Clonal Clusters and Virulence Factors of Group C and G Streptococcus Causing Severe Infections, Manitoba, Canada, 2012–2014

Sylvain A. LotherComments to Author , Walter Demczuk, Irene Martin, Michael R. Mulvey, Brenden Dufault, Philippe Lagacé-Wiens, and Yoav Keynan
Author affiliations: AuUniversity of Manitoba, Winnipeg, Manitoba, Canada (S. Lother, B. Dufault, P. Lagacé-Wiens, Y. Keynan); National Microbiology Laboratory, Winnipeg (W. Demczuk, I. Martin, M. Mulvey); Diagnostic Service Manitoba, Winnipeg (P. Lagacé-Wiens)

Main Article

Table 3

Distribution of virulence factor genes in blood and respiratory isolates of Streptococcus dysgalactiae subsp. equisimilis from patients with group C and G Streptococcus bacteremia causing severe infections, Winnipeg, Manitoba, Canada, 2012–2014

Gene Gene product No. isolates positive for virulence factor/no. tested (%)
Reference
Total isolates Blood isolate Respiratory isolate
Adhesins
gapC Glyceraldehyde 3-P dehydrogenase 122/122 (100) 89/89 (100) 33/33 (100) (22)
Lmb Laminin-binding surface protein 122/122 (100) 89/89 (100) 33/33 (100) (22)
fnbB Fibronectin-binding protein 120/122 (98.4) 89/89 (100) 31/33 (94) (35)
fnB Fibronectin-binding protein 120/122 (98.4) 89/89 (100) 31/33 (94) (35)
cbp Collagen-binding protein 34/122 (27.9) 29/89 (33) 5/33 (15) (22)
gfbA Fibronectin-binding protein 32/122 (26.2) 24/89 (30) 8/33 (24) (35)
fbp Fibronectin-binding protein 11/122 (9.0) 10/89 (11) 1/33 (3) (22)
fbsA Fibrinogen-binding protein 0/122 0/89 0/33 (35)
pavA Adherence and virulence protein A 0/122 0/89 0/33 (35)
fnbA
Fibronectin-binding protein
0/122
0/89
0/33
(35)
Antiphagocytosis
cba
C protein β antigen
0/122
0/89
0/33
(35)
Complement protease
scpA C5a peptidase 122/122 (100) 89/89 (100) 33/33 (100) (22,35)
scpB
C5a peptidase
122/122 (100)
89/89 (100)
33/33 (100)
(35)
Exoenzyme
hylB
Hyaluronidase
122/122 (100)
89/89 (100)
33/33 (100)
(22,35)
Invasion
bca
C protein α antigen
11/122 (9.0)
5/89 (6)
6/33 (18)
(35)
Streptokinases
ska Streptokinase 122/122 (100) 89/89 (100) 33/33 (100) (22)
skc Streptokinase 122/122 (100) 89/89 (100) 33/33 (100) (35)
skg
Streptokinase
122/122 (100)
89/89 (100)
33/33 (100)
(35)
Toxins
sagA Streptolysin S 122/122 (100) 89/89 (100) 33/33 (100) (22)
slo Streptolysin O 122/122 (100) 89/89 (100) 33/33 (100) (22)
speG Streptococcus pyrogenic exotoxin G 81/122 (66.4) 58/89 (65) 23/33 (70) (22)
cylE β hemolysin/cytolysin 0/122 0/89 0/33 (35)
Cfb
CAMP factor
0/122
0/89
0/33
(35)
Other
sicG Streptococcal inhibitor of a complement 47/122 (38.5) 35/89 (39) 12/33 (36) (22)

Main Article

References
  1. Schwartz  IS, Keynan  Y, Gilmour  MW, Dufault  B, Lagacé-Wiens  P. Changing trends in β-hemolytic streptococcal bacteremia in Manitoba, Canada: 2007-2012. Int J Infect Dis. 2014;28:2113. DOIPubMedGoogle Scholar
  2. Nielsen  HU, Kolmos  HJ, Frimodt-Møller  N. Beta-hemolytic streptococcal bacteremia: a review of 241 cases. Scand J Infect Dis. 2002;34:4836. DOIPubMedGoogle Scholar
  3. Sylvetsky  N, Raveh  D, Schlesinger  Y, Rudensky  B, Yinnon  AM. Bacteremia due to beta-hemolytic Streptococcus group G: increasing incidence and clinical characteristics of patients. Am J Med. 2002;112:6226. DOIPubMedGoogle Scholar
  4. Lambertsen  LM, Ingels  H, Schønheyder  HC, Hoffmann  S; Danish Streptococcal Surveillance Collaboration Group 2011. Nationwide laboratory-based surveillance of invasive beta-haemolytic streptococci in Denmark from 2005 to 2011. Clin Microbiol Infect. 2014;20:O21623. DOIPubMedGoogle Scholar
  5. Rantala  S, Vuopio-Varkila  J, Vuento  R, Huhtala  H, Syrjänen  J. Clinical presentations and epidemiology of beta-haemolytic streptococcal bacteraemia: a population-based study. Clin Microbiol Infect. 2009;15:2868. DOIPubMedGoogle Scholar
  6. Harris  P, Siew  D-A, Proud  M, Buettner  P, Norton  R. Bacteraemia caused by beta-haemolytic streptococci in North Queensland: changing trends over a 14-year period. Clin Microbiol Infect. 2011;17:121622. DOIPubMedGoogle Scholar
  7. Ekelund  K, Skinhøj  P, Madsen  J, Konradsen  HB. Invasive group A, B, C and G streptococcal infections in Denmark 1999-2002: epidemiological and clinical aspects. Clin Microbiol Infect. 2005;11:56976. DOIPubMedGoogle Scholar
  8. Rantala  S, Vuopio-Varkila  J, Vuento  R, Huhtala  H, Syrjänen  J. Predictors of mortality in beta-hemolytic streptococcal bacteremia: a population-based study. J Infect. 2009;58:26672. DOIPubMedGoogle Scholar
  9. Bradley  SF, Gordon  JJ, Baumgartner  DD, Marasco  WA, Kauffman  CA. Group C streptococcal bacteremia: analysis of 88 cases. Rev Infect Dis. 1991;13:27080. DOIPubMedGoogle Scholar
  10. Broyles  LN, Van Beneden  C, Beall  B, Facklam  R, Shewmaker  PL, Malpiedi  P, et al. Population-based study of invasive disease due to beta-hemolytic streptococci of groups other than A and B. Clin Infect Dis. 2009;48:70612. DOIPubMedGoogle Scholar
  11. Shimomura  Y, Okumura  K, Murayama  SY, Yagi  J, Ubukata  K, Kirikae  T, et al. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS). BMC Genomics. 2011;12:17. DOIPubMedGoogle Scholar
  12. Bucher  A, Gaustad  P. Septicemia and endocarditis caused by group G streptococci in a Norwegian hospital. Eur J Clin Microbiol Infect Dis. 1990;9:2516. DOIPubMedGoogle Scholar
  13. Kristensen  B, Schønheyder  HC. A 13-year survey of bacteraemia due to beta-haemolytic streptococci in a Danish county. J Med Microbiol. 1995;43:637. DOIPubMedGoogle Scholar
  14. Schugk  J, Harjola  VP, Sivonen  A, Vuopio-Varkila  J, Valtonen  M. A clinical study of beta-haemolytic groups A, B, C and G streptococcal bacteremia in adults over an 8-year period. Scand J Infect Dis. 1997;29:2338. DOIPubMedGoogle Scholar
  15. McDonald  M, Towers  RJ, Andrews  RM, Carapetis  JR, Currie  BJ. Epidemiology of Streptococcus dysgalactiae subsp. equisimilis in tropical communities, Northern Australia. Emerg Infect Dis. 2007;13:1694700. DOIPubMedGoogle Scholar
  16. Bisno  AL, Collins  CM, Turner  JC. M proteins of group C streptococci isolated from patients with acute pharyngitis. J Clin Microbiol. 1996;34:25115.PubMedGoogle Scholar
  17. Leitner  E, Zollner-Schwetz  I, Zarfel  G, Masoud-Landgraf  L, Gehrer  M, Wagner-Eibel  U, et al. Prevalence of emm types and antimicrobial susceptibility of Streptococcus dysgalactiae subsp. equisimilis in Austria. Int J Med Microbiol. 2015;305:91824. DOIPubMedGoogle Scholar
  18. Davies  MR, McMillan  DJ, Beiko  RG, Barroso  V, Geffers  R, Sriprakash  KS, et al. Virulence profiling of Streptococcus dysgalactiae subspecies equisimilis isolated from infected humans reveals 2 distinct genetic lineages that do not segregate with their phenotypes or propensity to cause diseases. Clin Infect Dis. 2007;44:144254. DOIPubMedGoogle Scholar
  19. Nakagawa  I, Amano  A, Mizushima  N, Yamamoto  A, Yamaguchi  H, Kamimoto  T, et al. Autophagy defends cells against invading group A Streptococcus. Science. 2004;306:103740. DOIPubMedGoogle Scholar
  20. Humar  D, Datta  V, Bast  DJ, Beall  B, De Azavedo  JCS, Nizet  V. Streptolysin S and necrotising infections produced by group G streptococcus. Lancet. 2002;359:1249. DOIPubMedGoogle Scholar
  21. Commons  RJ, Smeesters  PR, Proft  T, Fraser  JD, Robins-Browne  R, Curtis  N. Streptococcal superantigens: categorization and clinical associations. Trends Mol Med. 2014;20:4862. DOIPubMedGoogle Scholar
  22. Lo  HH, Cheng  WS. Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis. APMIS. 2015;123:4552. DOIPubMedGoogle Scholar
  23. Hashikawa  S, Iinuma  Y, Furushita  M, Ohkura  T, Nada  T, Torii  K, et al. Characterization of group C and G streptococcal strains that cause streptococcal toxic shock syndrome. J Clin Microbiol. 2004;42:18692. DOIPubMedGoogle Scholar
  24. Pinho  MD, Melo-Cristino  J, Ramirez  M. Clonal relationships between invasive and noninvasive Lancefield group C and G streptococci and emm-specific differences in invasiveness. J Clin Microbiol. 2006;44:8416. DOIPubMedGoogle Scholar
  25. Breiman  RF, Davis  JP, Facklam  RR, Gray  BM, Hoge  CW, Kaplan  EL, et al.; The Working Group on Severe Streptococcal Infections. Defining the group A streptococcal toxic shock syndrome. Rationale and consensus definition. JAMA. 1993;269:3901. DOIPubMedGoogle Scholar
  26. Kellett  J, Deane  B. The Simple Clinical Score predicts mortality for 30 days after admission to an acute medical unit. QJM. 2006;99:77181. DOIPubMedGoogle Scholar
  27. Olsson  T, Terent  A, Lind  L. Rapid Emergency Medicine score: a new prognostic tool for in-hospital mortality in nonsurgical emergency department patients. J Intern Med. 2004;255:57987. DOIPubMedGoogle Scholar
  28. Ghanem-Zoubi  NO, Vardi  M, Laor  A, Weber  G, Bitterman  H. Assessment of disease-severity scoring systems for patients with sepsis in general internal medicine departments. Crit Care. 2011;15:R95. DOIPubMedGoogle Scholar
  29. Magoč  T, Salzberg  SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:295763. DOIPubMedGoogle Scholar
  30. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  31. Seemann  T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:20689. DOIPubMedGoogle Scholar
  32. Li  H, Handsaker  B, Wysoker  A, Fennell  T, Ruan  J, Homer  N, et al.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:20789. DOIPubMedGoogle Scholar
  33. Guindon  S, Dufayard  J-F, Lefort  V, Anisimova  M, Hordijk  W, Gascuel  O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:30721. DOIPubMedGoogle Scholar
  34. Ragonnet-Cronin  M, Hodcroft  E, Hué  S, Fearnhill  E, Delpech  V, Brown  AJL, et al.; UK HIV Drug Resistance Database. Automated analysis of phylogenetic clusters. BMC Bioinformatics. 2013;14:317. DOIPubMedGoogle Scholar
  35. Wang  X, Zhang  X, Zong  Z. Genome sequence and virulence factors of a group G Streptococcus dysgalactiae subsp. equisimilis strain with a new element carrying erm(B). Sci Rep. 2016;6:20389. DOIPubMedGoogle Scholar
  36. Francisco  AP, Vaz  C, Monteiro  PT, Melo-Cristino  J, Ramirez  M, Carriço  JA. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics. 2012;13:87. DOIPubMedGoogle Scholar
  37. Altschul  SF, Madden  TL, Schäffer  AA, Zhang  J, Zhang  Z, Miller  W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389402. DOIPubMedGoogle Scholar

Main Article

Page created: June 15, 2017
Page updated: June 15, 2017
Page reviewed: June 15, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external