Volume 23, Number 8—August 2017
Research
Clinical Laboratory Values as Early Indicators of Ebola Virus Infection in Nonhuman Primates
Table 2
Laboratory variable, d | Models of infection |
||||
---|---|---|---|---|---|
Rhesus macaque with |
p value‡ | Cynomolgus macaque with Kikwit strain, mean (range), n = 6 | p value§ | ||
Kikwit strain, mean (range), n = 18† | Makona strain, mean (range), n = 6 | ||||
BUN, mg/dL | |||||
0 | 16.1 (11–22) | 15.2 (10–19) | 0.544 | 17.8 (16–23) | 0.217 |
3 | 15.3 (11–20) | 14.3 (8–19) | 0.615 | 17.3 (13–21) | 0.215 |
5 | 20.0 (10–39) | 14.2 (10–17) | 0.365 | 38.5 (15–116) | 0.124 |
7 |
58.7 (11–108) |
17.2 (11–24) |
0.050 |
112.6 (58–135) |
0.015 |
Creatinine, mg/dL | |||||
0 | 0.6 (0.5–0.8) | 0.5 (0.5–0.6) | 0.012 | 0.6 (0.5–0.9) | 0.871 |
3 | 0.6 (0.5, 0.8) | 0.5 (0.4–0.6) | 0.030 | 0.6 (0.4–0.9) | 0.662 |
5 | 1.1 (0.6–2.6) | 0.6 (0.5–0.7) | 0.005 | 1.8 (0.8–5.2) | 0.094 |
7 |
2.3 (0.7–5.6) |
0.8 (0.7–1.0) |
0.055 |
24.3 (1.7 to >56.0) |
0.037 |
AST, U/L | |||||
0 | 37.9 (22– 62) | 35.8 (26– 53) | 0.702 | 64.7 (37– 151) | 0.192 |
3 | 49.4 (32, 74) | 42.0 (31–57) | 0.230 | 95.7 (47–145) | 0.002 |
5 | 411.6 (46–1,716) | 47.0 (33–56) | 0.001¶ | 423.2 (116–743) | 0.386 |
7 |
991.4 (145–1,585) |
244.5 (113–398) |
0.009 |
1,626.6 (752 to >3,400) |
0.624 |
ALT, U/L | |||||
0 | 32.1 (10–64) | 17.5 (7–27) | 0.009 | 53.8 (36–94) | 0.078 |
3 | 45.2 (10–87) | 25.0 (10–38) | 0.009 | 60.2 (51–81) | 0.028 |
5 | 137.2 (19–554) | 29.0 (13–46) | 0.008 | 87.8 (51–138) | 0.790 |
7 |
299.4 (68–606) |
67.2 (21–108) |
0.016 |
610.0 (154–2,087) |
0.955 |
CRP, mg/L | |||||
0 | 5.6 (0–20) | 5.2 (5–6) | 0.651 | 6.8 (4–11) | 0.385 |
3 | 10.1 (5–31) | 5.2 (5–6) | 0.013 | 19.7 (8–59) | 0.047 |
5 | 71.2 (43–83) | 17.2 (6–44) | <0.001¶ | 73.8 (70–78) | 0.764 |
7 |
59.5 (44–74) |
57.3 (32–71) |
0.960 |
48.2 (13–72) |
0.533 |
LDH, IU/L | |||||
0 | 510.8 (366–679) | 456.0 (390–537) | 0.083 | 964.7 (653–1,267) | 0.008 |
3 | 641.0 (381–829) | 563.3 (454–775) | 0.110 | 1,511.5 (894–2,532) | <0.001¶ |
5 | 3,897.2 (670 to >9,000) | 700.8 (551–826) | 0.001¶ | 5,799.8 (1,667 to >9,000) | 0.229 |
7 |
7,965.7 (1,531 to >9,000) |
5,524.3 (1,562 to >9,000) |
0.042 |
9,000 (>9,000 to >9,000) |
0.353 |
CPK, U/L | |||||
0# | 435.2 (55–915) | 214.7 (84–395) | 0.006 | ND | |
3 | 507.3 (181–874) | 557.0 (333–897) | 0.594 | ND | |
5 | 1,721.3 (183–5157) | 494.5 (287–755) | 0.014 | ND | |
7 |
4,599.1(320 to >6,400) |
2,459.3 (700–5,692) |
0.065 |
ND |
|
Platelets, × 103/mm3 | |||||
0 | 347.5 (240–502) | 274.3 (220–318) | 0.002 | 312.5 (278–373) | 0.102 |
3 | 330.4 (223–557) | 285.7 (244–330) | 0.193 | 288.2 (237–352) | 0.217 |
5 | 172.0 (91–303) | 253.7 (199–286) | 0.006 | 197.3 (144–312) | 0.350 |
7 |
89.6 (34–161) |
112.3 (26–191) |
0.482 |
142.4 (106–195) |
0.047 |
PT, s | |||||
0 | 11.2 (10.4–14.9) | 11.4 (10.8–12.2) | 0.374 | 10.6 (9.8–11.3) | 0.010 |
3 | 10.7 (9.8–12.7) | 10.9 (10.1–12.0) | 0.365 | 10.4 (9.7–10.9) | 0.545 |
5 | 13.9 (10.9–18.1) | 10.4 (10.0–10.9) | <0.001¶ | 14.1 (12.6–17.1) | 0.739 |
7 |
15.7 (12–19.6) |
12.4 (11.7–13.8) |
0.004 |
18.0 (14.6–22.8) |
0.282 |
APTT, s | |||||
0 | 27.0 (24.5–32.0) | 27.5 (26.8–29.6) | 0.440 | 25.8 (24.4–27.5) | 0.095 |
3 | 26.7 (23.8–31.5) | 26.1 (25.0–28.5) | 0.841 | 27.1 (25.0–32.9) | 0.947 |
5 | 43.4 (31.5–62.6) | 27.6 (24.7–31.8) | <0.001¶ | 41.2 (35.2–48.4) | 0.571 |
7 |
60.4 (42.3–111.1) |
41.9 (34.9–47.6) |
0.012 |
62.5 (51.3–67.4) |
0.532 |
AT, % | |||||
0 | 101.8 (85.8–116.9) | 105.7 (90.5–121.6) | 0.450 | 100.5 (92.0–118.6) | 0.768 |
3 | 104.2 (76.0–127.3) | 110.0 (98.8–119.8) | 0.286 | 103.0 (92.8–115.3) | 0.689 |
5 | 76.9 (55.5–100.9) | 113.8 (103.1–129.2) | <0.001¶ | 73.5 (70.4–83.3) | 0.505 |
7 | 67.7 (38.5–94.8) | 103.1 (95.5–116.0) | <0.001¶ | 49.4 (34.0–55.9) | 0.031 |
*ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; AST, aspartate aminotransferase; AT, antithrombin; BUN, blood urea nitrogen; CPK, creatine phosphokinase; CRP, C-reactive protein; EBOV, Ebola virus; LDH, lactate dehydrogenase; ND, not done; PT, prothrombin time.
†Results for 6 macaques in the EBOV Kikwit strain group were previously reported as a mean difference from day 7 to day 0 (28).
‡For results for rhesus macaque model of infection with EBOV Kikwit strain vs. Makona strain. Bold indicates p<0.05.
§For rhesus macaque model with EBOV Kikwit strain vs. cynomolgus macaque model with EBOV Kikwit strain. Bold indicates p<0.05.
¶Adjusted p value of <0.001, based upon a simplified Bonferroni correction for multiple comparisons.
#In the 24 nonhuman primates infected with EBOV for whom CPK values were analyzed, 16 (67%) had levels >5,000 U/L during the course of disease.
References
- Centers for Disease Control and Prevention. 2014 Ebola outbreak in West Africa—case counts [cited 2016 Dec 5]. https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html
- Kortepeter MG, Bausch DG, Bray M. Basic clinical and laboratory features of filoviral hemorrhagic fever. J Infect Dis. 2011;204(Suppl 3):S810–6. DOIPubMedGoogle Scholar
- Faye O, Andronico A, Faye O, Salje H, Boëlle PY, Magassouba N, et al. Use of viremia to evaluate the baseline case fatality ratio of Ebola virus disease and inform treatment studies: a retrospective cohort study. PLoS Med. 2015;12:e1001908. DOIPubMedGoogle Scholar
- Towner JS, Rollin PE, Bausch DG, Sanchez A, Crary SM, Vincent M, et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J Virol. 2004;78:4330–41. DOIPubMedGoogle Scholar
- Schieffelin JS, Shaffer JG, Goba A, Gbakie M, Gire SK, Colubri A, et al.; KGH Lassa Fever Program; Viral Hemorrhagic Fever Consortium; WHO Clinical Response Team. Clinical illness and outcomes in patients with Ebola in Sierra Leone. N Engl J Med. 2014;371:2092–100. DOIPubMedGoogle Scholar
- de La Vega M-A, Caleo G, Audet J, Qiu X, Kozak RA, Brooks JI, et al. Ebola viral load at diagnosis associates with patient outcome and outbreak evolution. J Clin Invest. 2015;125:4421–8. DOIPubMedGoogle Scholar
- Lanini S, Portella G, Vairo F, Kobinger GP, Pesenti A, Langer M, et al.; INMI-EMERGENCY EBOV Sierra Leone Study Group. Blood kinetics of Ebola virus in survivors and nonsurvivors. J Clin Invest. 2015;125:4692–8. DOIPubMedGoogle Scholar
- Crowe SJ, Maenner MJ, Kuah S, Erickson BR, Coffee M, Knust B, et al. Prognostic indicators for Ebola patient survival. Emerg Infect Dis. 2016;22:217–23. DOIPubMedGoogle Scholar
- Fitzpatrick G, Vogt F, Moi Gbabai OB, Decroo T, Keane M, De Clerck H, et al. The contribution of Ebola viral load at admission and other patient characteristics to mortality in a Médecins Sans Frontières Ebola case management centre, Kailahun, Sierra Leone, June–October 2014. J Infect Dis. 2015;212:1752–8. DOIPubMedGoogle Scholar
- Hunt L, Gupta-Wright A, Simms V, Tamba F, Knott V, Tamba K, et al. Clinical presentation, biochemical, and haematological parameters and their association with outcome in patients with Ebola virus disease: an observational cohort study. Lancet Infect Dis. 2015;15:1292–9. DOIPubMedGoogle Scholar
- Janvier F, Foissaud V, Cotte J, Aletti M, Savini H, Cordier PY, et al.; Healthcare Workers Ebola Treatment Center Medical Team. Monitoring of prognostic laboratory markers in Ebola virus disease. J Infect Dis. 2016;213:1049. DOIPubMedGoogle Scholar
- Haaskjold YL, Bolkan HA, Krogh KØ, Jongopi J, Lundeby KM, Mellesmo S, et al. Clinical features of and risk factors for fatal Ebola virus disease, Moyamba District, Sierra Leone, December 2014–February 2015. Emerg Infect Dis. 2016;22:1537–44. DOIPubMedGoogle Scholar
- Xu Z, Jin B, Teng G, Rong Y, Sun L, Zhang J, et al. Epidemiologic characteristics, clinical manifestations, and risk factors of 139 patients with Ebola virus disease in western Sierra Leone. Am J Infect Control. 2016;44:1285–90. DOIPubMedGoogle Scholar
- Wong JY, Zhang W, Kargbo D, Haque U, Hu W, Wu P, et al. Assessment of the severity of Ebola virus disease in Sierra Leone in 2014-2015. Epidemiol Infect. 2016;144:1473–81. DOIPubMedGoogle Scholar
- Qin E, Bi J, Zhao M, Wang Y, Guo T, Yan T, et al. Clinical features of patients with Ebola virus disease in Sierra Leone. Clin Infect Dis. 2015;61:491–5. DOIPubMedGoogle Scholar
- Sadek RF, Khan AS, Stevens G, Peters CJ, Ksiazek TG. Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995: determinants of survival. J Infect Dis. 1999;179(Suppl 1):S24–7. DOIPubMedGoogle Scholar
- Agua-Agum J, Ariyarajah A, Blake IM, Cori A, Donnelly CA, Dorigatti I, et al.; WHO Ebola Response Team. Ebola virus disease among male and female persons in West Africa. N Engl J Med. 2016;374:96–8. DOIPubMedGoogle Scholar
- Rollin PE, Bausch DG, Sanchez A. Blood chemistry measurements and D-Dimer levels associated with fatal and nonfatal outcomes in humans infected with Sudan Ebola virus. J Infect Dis. 2007;196(Suppl 2):S364–71. DOIPubMedGoogle Scholar
- Barry M, Touré A, Traoré FA, Sako FB, Sylla D, Kpamy DO, et al. Clinical predictors of mortality in patients with Ebola virus disease. Clin Infect Dis. 2015;60:1821–4. DOIPubMedGoogle Scholar
- Barry M, Traoré FA, Sako FB, Kpamy DO, Bah EI, Poncin M, et al. Ebola outbreak in Conakry, Guinea: epidemiological, clinical, and outcome features. Med Mal Infect. 2014;44:491–4. DOIPubMedGoogle Scholar
- Martins K, Cooper C, Warren T, Wells J, Bell T, Raymond J, et al. Characterization of clinical and immunological parameters during Ebola virus infection of rhesus macaques. Viral Immunol. 2015;28:32–41. DOIPubMedGoogle Scholar
- Warren TK, Trefry JC, Marko ST, Chance TB, Wells JB, Pratt WD, et al. Euthanasia assessment in ebola virus infected nonhuman primates. Viruses. 2014;6:4666–82. DOIPubMedGoogle Scholar
- Marzi A, Feldmann F, Hanley PW, Scott DP, Günther S, Feldmann H. Delayed disease progression in cynomolgus macaques infected with Ebola virus Makona strain. Emerg Infect Dis. 2015;21:1777–83. DOIPubMedGoogle Scholar
- Wong G, Qiu X, de La Vega MA, Fernando L, Wei H, Bello A, et al. Pathogenicity comparison between the Kikwit and Makona Ebola virus variants in rhesus macaques. J Infect Dis. 2016;214(suppl 3):S281–9. DOIPubMedGoogle Scholar
- McElroy AK, Spiropoulou CF. Biomarkers for understanding Ebola virus disease. Biomarkers Med. 2014;8:1053–6. DOIPubMedGoogle Scholar
- Villinger F, Rollin PE, Brar SS, Chikkala NF, Winter J, Sundstrom JB, et al. Markedly elevated levels of interferon (IFN)-γ, IFN-α, interleukin (IL)-2, IL-10, and tumor necrosis factor-α associated with fatal Ebola virus infection. J Infect Dis. 1999;179(Suppl 1):S188–91. DOIPubMedGoogle Scholar
- Leroy EM, Baize S, Lu CY, McCormick JB, Georges AJ, Georges-Courbot MC, et al. Diagnosis of Ebola haemorrhagic fever by RT-PCR in an epidemic setting. J Med Virol. 2000;60:463–7. DOIPubMedGoogle Scholar
- Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–5. DOIPubMedGoogle Scholar
- Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN, Sood V, et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet. 2010;375:1896–905. DOIPubMedGoogle Scholar
- Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 2014;514:47–53.PubMedGoogle Scholar
- Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC, Bohorov O, et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med. 2013;5:199ra113. DOIPubMedGoogle Scholar
- Colubri A, Silver T, Fradet T, Retzepi K, Fry B, Sabeti P. Transforming clinical data into actionable prognosis models: machine-learning framework and field-deployable app to predict outcome of Ebola patients. PLoS Negl Trop Dis. 2016;10:e0004549. DOIPubMedGoogle Scholar
- Hasanoglu I, Guner R, Carhan A, Kocak Tufan Z, Yagci-Caglayik D, Guven T, et al. Crucial parameter of the outcome in Crimean Congo hemorrhagic fever: Viral load. J Clin Virol. 2016;75:42–6. DOIPubMedGoogle Scholar
- Ozturk B, Tutuncu E, Kuscu F, Gurbuz Y, Sencan I, Tuzun H. Evaluation of factors predictive of the prognosis in Crimean-Congo hemorrhagic fever: new suggestions. Int J Infect Dis. 2012;16:e89–93. DOIPubMedGoogle Scholar
- Gai ZT, Zhang Y, Liang MF, Jin C, Zhang S, Zhu CB, et al. Clinical progress and risk factors for death in severe fever with thrombocytopenia syndrome patients. J Infect Dis. 2012;206:1095–102. DOIPubMedGoogle Scholar
- Sirikutt P, Kalayanarooj S. Serum lactate and lactate dehydrogenase as parameters for the prediction of dengue severity. J Med Assoc Thai. 2014;97(Suppl 6):S220–31.PubMedGoogle Scholar
- Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, et al. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17:76–100. DOIPubMedGoogle Scholar
- Guzmán-de la Garza FJ, Ibarra-Hernández JM, Cordero-Pérez P, Villegas-Quintero P, Villarreal-Ovalle CI, Torres-González L, et al. Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion. Clinics (Sao Paulo). 2013;68:1034–8. DOIPubMedGoogle Scholar
- Yasuda H, Okita Y, Imaoka H, Fujikawa H, Ohi M, Araki T, et al. Intestinal necrosis due to norovirus enteritis. Clin J Gastroenterol. 2015;8:10–3. DOIPubMedGoogle Scholar
- de Villiers FPR, Driessen M. Clinical neonatal rotavirus infection: association with necrotising enterocolitis. S Afr Med J. 2012;102:620–4. DOIPubMedGoogle Scholar
- Lynn LA. Combined endothelial and epithelial barrier disruption of the colon may be a contributing factor to the Ebola sepsis-like syndrome. Patient Saf Surg. 2015;9:1. DOIPubMedGoogle Scholar
- Kortepeter MG, Lawler JV, Honko A, Bray M, Johnson JC, Purcell BK, et al. Real-time monitoring of cardiovascular function in rhesus macaques infected with Zaire ebolavirus. J Infect Dis. 2011;204(Suppl 3):S1000–10. DOIPubMedGoogle Scholar
- Zein JG, Lee GL, Tawk M, Dabaja M, Kinasewitz GT. Prognostic significance of elevated serum lactate dehydrogenase (LDH) in patients with severe sepsis. Chest. 2004;126(4_Meeting Abstracts):873S. DOIGoogle Scholar
- Kruse O, Grunnet N, Barfod C. Blood lactate as a predictor for in-hospital mortality in patients admitted acutely to hospital: a systematic review. Scand J Trauma Resusc Emerg Med. 2011;19:74. DOIPubMedGoogle Scholar
- Vincent JL, Quintairos E Silva A, Couto L Jr, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016;20:257. DOIPubMedGoogle Scholar
- Duman A, Akoz A, Kapci M, Ture M, Orun S, Karaman K, et al. Prognostic value of neglected biomarker in sepsis patients with the old and new criteria: predictive role of lactate dehydrogenase. Am J Emerg Med. 2016;34:2167–71. DOIPubMedGoogle Scholar
- Erez A, Shental O, Tchebiner JZ, Laufer-Perl M, Wasserman A, Sella T, et al. Diagnostic and prognostic value of very high serum lactate dehydrogenase in admitted medical patients. Isr Med Assoc J. 2014;16:439–43.PubMedGoogle Scholar
- Johnson E, Jaax N, White J, Jahrling P. Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus. Int J Exp Pathol. 1995;76:227–36.PubMedGoogle Scholar