Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 8—August 2017
Research

Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China

Changwen Ke1, Chris Ka Pun Mok1, Wenfei Zhu1, Haibo Zhou1, Jianfeng He, Wenda Guan, Jie Wu, Wenjun Song, Dayan Wang, Jiexiong Liu, Qinhan Lin, Daniel Ka Wing Chu, Lei Yang, Nanshan Zhong, Zifeng Yang2Comments to Author , Yuelong Shu2Comments to Author , and Joseph Sriyal Malik Peiris2
Author affiliations: Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (C. Ke, J. He, J. Wu); First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou (C.K.P. Mok, W. Guan, D.K.W. Chu, N. Zhong, Z. Yang, J.S.M. Peiris); The University of Hong Kong, Hong Kong, China (C.K.P. Mok, J.S.M. Peiris); National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China (W. Zhu, D. Wang, L. Yang, Y. Shu); The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China (H. Zhou, J. Liu, Q. Lin); Jinan University, Guangzhou (W. Song); Macau University of Science and Technology, Macau, China (N. Zhong, Z. Yang)

Main Article

Figure 4

Phylogenetic analysis of the hemagglutinin gene of highly pathogenic avian influenza A(H7N9)  viruses in Guangdong Province, China, and reference viruses. Maximum likelihood trees were constructed with PhyML by using the general time reversible plus gamma distribution plus proportion of invariable sites model. Node support was estimated by the SH-like aLRT method, and values >0.8 are shown. Virus clades A, B, and C—previously defined as W2-A, W2-B, and W2-C (5)—are labeled. A/Guangdong/17SF00

Figure 4. Phylogenetic analysis of the hemagglutinin gene of highly pathogenic avian influenza A(H7N9) viruses in Guangdong Province, China, and reference viruses. Maximum likelihood trees were constructed with PhyML by using the general time reversible plus gamma distribution plus proportion of invariable sites model. Node support was estimated by the SH-like aLRT method, and values >0.8 are shown. Virus clades A, B, and C—previously defined as W2-A, W2-B, and W2-C (5)—are labeled. A/Guangdong/17SF006/2017 (from a 56-year-old man), A/Guangdong/17SF003/2016, A/Taiwan/1/2017, and environmental isolates are underlined. Scale bar indicates nucleotide substitutions per site.

Main Article

References
  1. World Heath Organization. Human infection with avian influenza A(H7N9) virus—China. Disease outbreak news 2017 Feb 20 [cited 2017 May 1]. http://www.who.int/csr/don/20-february-2017-ah7n9-china/en/
  2. World Heath Organization. Human infection with avian influenza A(H7N9) virus—China. Disease outbreak news 2017 Feb 22 [cited 2017 May 1]. http://www.who.int/csr/don/22-february-2017-ah7n9-china/en/
  3. Qin  Y, Horby  PW, Tsang  TK, Chen  E, Gao  L, Ou  J, et al. Differences in the epidemiology of human cases of avian influenza A(H7N9) and A(H5N1) viruses infection. Clin Infect Dis. 2015;61:56371. DOIPubMedGoogle Scholar
  4. Yu  H, Cowling  BJ, Feng  L, Lau  EH, Liao  Q, Tsang  TK, et al. Human infection with avian influenza A H7N9 virus: an assessment of clinical severity. Lancet. 2013;382:13845. DOIPubMedGoogle Scholar
  5. Chen  Z, Liu  H, Lu  J, Luo  L, Li  K, Liu  Y, et al. Asymptomatic, mild, and severe influenza A(H7N9) virus infection in humans, Guangzhou, China. Emerg Infect Dis. 2014;20:153540. DOIPubMedGoogle Scholar
  6. Lin  YP, Yang  ZF, Liang  Y, Li  ZT, Bond  HS, Chua  H, et al. Population seroprevalence of antibody to influenza A(H7N9) virus, Guangzhou, China. BMC Infect Dis. 2016;16:632. DOIPubMedGoogle Scholar
  7. Lam  TT, Zhou  B, Wang  J, Chai  Y, Shen  Y, Chen  X, et al. Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature. 2015;522:1025. DOIPubMedGoogle Scholar
  8. Gao  R, Cao  B, Hu  Y, Feng  Z, Wang  D, Hu  W, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013;368:188897. DOIPubMedGoogle Scholar
  9. Chan  MC, Chan  RW, Chan  LL, Mok  CK, Hui  KP, Fong  JH, et al. Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro cultures of the human respiratory tract. Lancet Respir Med. 2013;1:53442. DOIPubMedGoogle Scholar
  10. Zhu  H, Wang  D, Kelvin  DJ, Li  L, Zheng  Z, Yoon  SW, et al. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science. 2013;341:1836. DOIPubMedGoogle Scholar
  11. Luczo  JM, Stambas  J, Durr  PA, Michalski  WP, Bingham  J. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Rev Med Virol. 2015;25:40630. DOIPubMedGoogle Scholar
  12. Schrauwen  EJ, Herfst  S, Leijten  LM, van Run  P, Bestebroer  TM, Linster  M, et al. The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets. J Virol. 2012;86:397584. DOIPubMedGoogle Scholar
  13. World Organisation for Animal Health and Food and Agriculture Organization Influenza. Influenza A cleavage sites [cited 2017 Feb 24]. http://www.offlu.net/fileadmin/home/en/resource-centre/pdf/Influenza_A_Cleavage_Sites.pdf
  14. Yang  JR, Liu  MT. Human infection caused by an avian influenza A (H7N9) virus with a polybasic cleavage site in Taiwan, 2017. J Formos Med Assoc. 2017;116:2102. DOIPubMedGoogle Scholar
  15. Zhang  F, Bi  Y, Wang  J, Wong  G, Shi  W, Hu  F, et al. Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China. J Infect. 2017;75:715. DOIPubMedGoogle Scholar
  16. Suguitan  AL Jr, Matsuoka  Y, Lau  YF, Santos  CP, Vogel  L, Cheng  LI, et al. The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J Virol. 2012;86:270614. DOIPubMedGoogle Scholar
  17. Zeng  H, Pappas  C, Belser  JA, Houser  KV, Zhong  W, Wadford  DA, et al. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J Virol. 2012;86:66778. DOIPubMedGoogle Scholar
  18. Gao  HN, Lu  HZ, Cao  B, Du  B, Shang  H, Gan  JH, et al. Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med. 2013;368:227785. DOIPubMedGoogle Scholar
  19. Hu  Y, Lu  S, Song  Z, Wang  W, Hao  P, Li  J, et al. Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. Lancet. 2013;381:22739. DOIPubMedGoogle Scholar
  20. Yen  HL, McKimm-Breschkin  JL, Choy  KT, Wong  DD, Cheung  PP, Zhou  J, et al. Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population. MBio. 2013;4:e00396-13. DOIPubMedGoogle Scholar
  21. Mok  CK, Lee  HH, Lestra  M, Nicholls  JM, Chan  MC, Sia  SF, et al. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol. 2014;88:356876. DOIPubMedGoogle Scholar
  22. Neumann  G, Kawaoka  Y. Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis. 2006;12:8816. DOIPubMedGoogle Scholar
  23. Yamayoshi  S, Fukuyama  S, Yamada  S, Zhao  D, Murakami  S, Uraki  R, et al. Amino acids substitutions in the PB2 protein of H7N9 influenza A viruses are important for virulence in mammalian hosts. Sci Rep. 2015;5:8039. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

2These authors contributed equally to this article.

Page created: July 18, 2017
Page updated: July 18, 2017
Page reviewed: July 18, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external