Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 9—September 2017
Research

Molecular Antimicrobial Resistance Surveillance for Neisseria gonorrhoeae, Northern Territory, Australia

David WhileyComments to Author , Ella Trembizki, Cameron Buckley, Kevin Freeman, Robert W. Baird, Miles Beaman, Marcus Y. Chen, Basil Donovan, Ratan L. Kundu, Christopher K. Fairley, Rebecca Guy, Tiffany Hogan, John M. Kaldor, Mahdad Karimi, Athena Limnios, David G. Regan, Nathan Ryder, Jiunn-Yih Su, James Ward, and Monica M. Lahra
Author affiliations: Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia (D. Whiley); The University of Queensland, Brisbane (D. Whiley, E. Trembizki, C. Buckley); Royal Darwin Hospital, Darwin, Northern Territory, Australia (K. Freeman, R.W. Baird); University of Western Australia, Nedlands, Western Australia, Australia (M. Beaman); University of Notre Dame Australia, Fremantle, Western Australia, Australia (M. Beaman); Western Diagnostic Pathology, Perth, Western Australia, Australia (M. Beaman, M. Karimi); Alfred Health, Carlton, Victoria, Australia (M. Chen, C.K. Fairley); Central Clinical School, Monash University, Melbourne, Victoria, Australia (M. Chen, C.K. Fairley); Sydney Hospital, Sydney, New South Wales, Australia (B. Donovan); University of New South Wales, Sydney (B. Donovan, R. Guy, J.M. Kaldor, D.G. Regan, N. Ryder, M.M. Lahra); Prince of Wales Hospital, Sydney (R.L. Kundu, T. Hogan, A. Limnios, M.M. Lahra); School of Medical Sciences, Hunter New England Local Health District, Sydney (N. Ryder); Menzies School of Health Research and Charles Darwin University, Darwin (J.-Y. Su); South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (J. Ward); Flinders University, Adelaide (J. Ward)

Main Article

Figure 2

Genotype frequency of the 456 Neisseria gonorrhoeae clinical samples taken from patients in the Northern Territory of Australia, 2014, that were successfully genotyped by using the iPLEX14SNP method (9). Presence of each genotype in the CAZ or ZAP regions is indicated. CAZ, ceftriaxone via intramuscular injection and oral azithromycin; ZAP, azithromycin, amoxicillin, probenecid.

Figure 2. Genotype frequency of the 456 Neisseria gonorrhoeae clinical samples taken from patients in the Northern Territory of Australia, 2014, that were successfully genotyped by using the iPLEX14SNP method (9). Presence of each genotype in the CAZ or ZAP regions is indicated. CAZ, ceftriaxone via intramuscular injection and oral azithromycin; ZAP, azithromycin, amoxicillin, probenecid.

Main Article

References
  1. World Health Organization. Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae, 2012 [cited 2016 May 25]. http://www.who.int/reproductivehealth/publications/rtis/9789241503501/en/
  2. Centers for Disease Control and Prevention. Cephalosporin-resistant Neisseria gonorrhoeae public health response plan 2012 [cited 2016 Nov 11]. https://www.cdc.gov/std/treatment/ceph-r-responseplanjuly30-2012.pdf
  3. Goire  N, Lahra  MM, Chen  M, Donovan  B, Fairley  CK, Guy  R, et al. Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol. 2014;12:2239. DOIPubMedGoogle Scholar
  4. Ohnishi  M, Saika  T, Hoshina  S, Iwasaku  K, Nakayama  S, Watanabe  H, et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg Infect Dis. 2011;17:1489. DOIPubMedGoogle Scholar
  5. Unemo  M, Golparian  D, Nicholas  R, Ohnishi  M, Gallay  A, Sednaoui  P. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother. 2012;56:127380. DOIPubMedGoogle Scholar
  6. Lahra  MM, Ryder  N, Whiley  DM. A new multidrug-resistant strain of Neisseria gonorrhoeae in Australia. N Engl J Med. 2014;371:18501. DOIPubMedGoogle Scholar
  7. Centers for Disease Control and Prevention. Update to CDC’s Sexually Transmitted Diseases Treatment Guidelines, 2010: oral cephalosporins no longer a recommended treatment for gonococcal infections. MMWR Morb Mortal Wkly Rep. 2012;61:5904.PubMedGoogle Scholar
  8. Fifer  H, Natarajan  U, Jones  L, Alexander  S, Hughes  G, Golparian  D, et al. Failure of dual antimicrobial therapy in treatment of gonorrhea. N Engl J Med. 2016;374:25046. DOIPubMedGoogle Scholar
  9. Trembizki  E, Smith  H, Lahra  MM, Chen  M, Donovan  B, Fairley  CK, et al. High-throughput informative single nucleotide polymorphism-based typing of Neisseria gonorrhoeae using the Sequenom MassARRAY iPLEX platform. J Antimicrob Chemother. 2014;69:152632. DOIPubMedGoogle Scholar
  10. Lahra  MM; Australian Gonococcal Surveillance Programme. Australian Gonococcal Surveillance Programme annual report, 2014. Commun Dis Intell Q Rep. 2015;39:E34754.PubMedGoogle Scholar
  11. Buckley  C, Trembizki  E, Baird  RW, Chen  M, Donovan  B, Freeman  K, et al. Multitarget PCR assay for direct detection of penicillinase-producing Neisseria gonorrhoeae for enhanced surveillance of gonococcal antimicrobial resistance. J Clin Microbiol. 2015;53:27068. DOIPubMedGoogle Scholar
  12. Goire  N, Freeman  K, Tapsall  JW, Lambert  SB, Nissen  MD, Sloots  TP, et al. Enhancing gonococcal antimicrobial resistance surveillance: a real-time PCR assay for detection of penicillinase-producing Neisseria gonorrhoeae by use of noncultured clinical samples. J Clin Microbiol. 2011;49:5138. DOIPubMedGoogle Scholar
  13. Speers  DJ, Fisk  RE, Goire  N, Mak  DB. Non-culture Neisseria gonorrhoeae molecular penicillinase production surveillance demonstrates the long-term success of empirical dual therapy and informs gonorrhoea management guidelines in a highly endemic setting. J Antimicrob Chemother. 2014;69:12437. DOIPubMedGoogle Scholar
  14. Buckley  C, Trembizki  E, Donovan  B, Chen  M, Freeman  K, Guy  R, et al.; GRAND Study Investigators. A real-time PCR assay for direct characterization of the Neisseria gonorrhoeae GyrA 91 locus associated with ciprofloxacin susceptibility. J Antimicrob Chemother. 2016;71:3536. DOIPubMedGoogle Scholar
  15. Trembizki  E, Guy  R, Donovan  B, Kaldor  JM, Lahra  MM, Whiley  DM; GRAND study investigators. Further evidence to support the individualised treatment of gonorrhoea with ciprofloxacin. Lancet Infect Dis. 2016;16:10056. DOIPubMedGoogle Scholar
  16. Trembizki  E, Buckley  C, Donovan  B, Chen  M, Guy  R, Kaldor  J, et al. Direct real-time PCR-based detection of Neisseria gonorrhoeae 23S rRNA mutations associated with azithromycin resistance. J Antimicrob Chemother. 2015;70:32449.PubMedGoogle Scholar
  17. Buckley  C, Trembizki  E, Donovan  B, Chen  M, Freeman  K, Guy  R, et al.; Gonorrhoea Resistance Assessment by Nucleic Acid Detection (GRAND) Study Investigators. Real-time PCR detection of Neisseria gonorrhoeae susceptibility to penicillin. J Antimicrob Chemother. 2016;71:30905. DOIPubMedGoogle Scholar
  18. Kugelman  G, Tapsall  JW, Goire  N, Syrmis  MW, Limnios  A, Lambert  SB, et al. Simple, rapid, and inexpensive detection of Neisseria gonorrhoeae resistance mechanisms using heat-denatured isolates and SYBR green-based real-time PCR. Antimicrob Agents Chemother. 2009;53:42116. DOIPubMedGoogle Scholar
  19. Palmer  HM, Young  H, Graham  C, Dave  J. Prediction of antibiotic resistance using Neisseria gonorrhoeae multi-antigen sequence typing. Sex Transm Infect. 2008;84:2804. DOIPubMedGoogle Scholar
  20. Whiley  DM, Goire  N, Ray  ES, Limnios  A, Lambert  SB, Nissen  MD, et al. Neisseria gonorrhoeae multi-antigen sequence typing using non-cultured clinical specimens. Sex Transm Infect. 2010;86:515. DOIPubMedGoogle Scholar
  21. Chisholm  SA, Unemo  M, Quaye  N, Johansson  E, Cole  MJ, Ison  CA, et al. Molecular epidemiological typing within the European Gonococcal Antimicrobial Resistance Surveillance Programme reveals predominance of a multidrug-resistant clone. Euro Surveill. 2013;18:18.PubMedGoogle Scholar
  22. Guy  R, Ward  J, Wand  H, Rumbold  A, Garton  L, Hengel  B, et al.; STRIVE Investigator Group. Coinfection with Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis: a cross-sectional analysis of positivity and risk factors in remote Australian Aboriginal communities. Sex Transm Infect. 2015;91:2016. DOIPubMedGoogle Scholar
  23. Trembizki  E, Wand  H, Donovan  B, Chen  M, Fairley  CK, Freeman  K, et al. The molecular epidemiology and antimicrobial resistance of Neisseria gonorrhoeae in Australia: a nationwide cross-sectional study, 2012. Clin Infect Dis. 2016;63:15918. DOIPubMedGoogle Scholar

Main Article

Page created: August 14, 2017
Page updated: August 14, 2017
Page reviewed: August 14, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external