Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 4—April 2018
Research

Artemisinin-Resistant Plasmodium falciparum with High Survival Rates, Uganda, 2014–2016

Mie Ikeda, Megumi Kaneko, Shin-Ichiro Tachibana, Betty Balikagala, Miki Sakurai-Yatsushiro, Shouki Yatsushiro, Nobuyuki Takahashi, Masato Yamauchi, Makoto Sekihara, Muneaki Hashimoto1, Osbert T. Katuro2, Alex Olia3, Paul S. Obwoya, Mary A. Auma, Denis A. Anywar, Emmanuel I. Odongo-Aginya, Joseph Okello-Onen4, Makoto Hirai, Jun Ohashi, Nirianne M.Q. Palacpac, Masatoshi Kataoka, Takafumi Tsuboi, Eisaku Kimura, Toshihiro Horii, and Toshihiro MitaComments to Author 
Author affiliations: Juntendo University School of Medicine, Tokyo, Japan (M. Ikeda, M. Kaneko, S.-I. Tachibana, M. Yamauchi, M. Sekihara, M. Hashimoto, M. Hirai, T. Mita); Ehime University, Matsuyama, Japan (B. Balikagala, T. Tsuboi); Tokyo Women’s Medical University, Tokyo (M. Sakurai-Yatsushiro, N. Takahashi); National Institute of Advanced Industrial Science and Technology, Kagawa, Japan (S. Yatsushiro, M. Kataoka); Med Biotech Laboratories, Kampala, Uganda (O.T. Katuro); Gulu University, Gulu, Uganda (A. Olia, D.A. Anywar, E.I. Odongo-Aginya, J. Okello-Onen); St. Mary’s Hospital Lacor, Gulu (P.S. Obwoya, M.A. Auma); The University of Tokyo, Tokyo (J. Ohashi); Osaka University, Osaka, Japan (N.M.Q. Palacpac, E. Kimura, T. Horii)

Main Article

Figure 4

Potential lineage of ring-stage Plasmodium falciparum isolates with high survival rates according to ring-stage assay (RSA) in Uganda. Principal component analysis (A) and STRUCTURE (34) analysis (B) suggested an indigenous emergence of parasites with high survival rates by RSA (H2, H3, and H4) in Africa. P. falciparum isolates (n = 31) that originated from Asia (n = 19), including 6 isolates with PfKelch13 mutation, or from Africa (n = 12) were obtained from Sequence Read Archive in National Ce

Figure 4. Potential lineage of ring-stage Plasmodium falciparum isolates with high survival rates according to ring-stage assay (RSA) in Uganda. Principal component analysis (A) and STRUCTURE (34) analysis (B) suggested an indigenous emergence of parasites with high survival rates by RSA (H2, H3, and H4) in Africa. P. falciparum isolates (n = 31) that originated from Asia (n = 19), including 6 isolates with PfKelch13 mutation, or from Africa (n = 12) were obtained from Sequence Read Archive in National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/sra). DRC, Democratic Republic of the Congo; PC1, first principal component; PC2, second principal component; WT, wild-type.

Main Article

References
  1. World Health Organization. World malaria report 2017. Geneva: The Organization; 2017.
  2. Noedl  H, Se  Y, Schaecher  K, Smith  BL, Socheat  D, Fukuda  MM; Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359:261920. DOIPubMedGoogle Scholar
  3. Dondorp  AM, Nosten  F, Yi  P, Das  D, Phyo  AP, Tarning  J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:45567. DOIPubMedGoogle Scholar
  4. Ashley  EA, Dhorda  M, Fairhurst  RM, Amaratunga  C, Lim  P, Suon  S, et al.; Tracking Resistance to Artemisinin Collaboration (TRAC). Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:41123. DOIPubMedGoogle Scholar
  5. Amaratunga  C, Lim  P, Suon  S, Sreng  S, Mao  S, Sopha  C, et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16:35765. DOIPubMedGoogle Scholar
  6. World Health Organization. World malaria report 2015. Geneva: The Organization; 2015.
  7. Rogerson  SJ, Wijesinghe  RS, Meshnick  SR. Host immunity as a determinant of treatment outcome in Plasmodium falciparum malaria. Lancet Infect Dis. 2010;10:519. DOIPubMedGoogle Scholar
  8. Lopera-Mesa  TM, Doumbia  S, Chiang  S, Zeituni  AE, Konate  DS, Doumbouya  M, et al. Plasmodium falciparum clearance rates in response to artesunate in Malian children with malaria: effect of acquired immunity. J Infect Dis. 2013;207:165563. DOIPubMedGoogle Scholar
  9. Amaratunga  C, Sreng  S, Suon  S, Phelps  ES, Stepniewska  K, Lim  P, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012;12:8518. DOIPubMedGoogle Scholar
  10. Klonis  N, Xie  SC, McCaw  JM, Crespo-Ortiz  MP, Zaloumis  SG, Simpson  JA, et al. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc Natl Acad Sci U S A. 2013;110:515762. DOIPubMedGoogle Scholar
  11. Witkowski  B, Lelièvre  J, Barragán  MJ, Laurent  V, Su  XZ, Berry  A, et al. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010;54:18727. DOIPubMedGoogle Scholar
  12. Witkowski  B, Amaratunga  C, Khim  N, Sreng  S, Chim  P, Kim  S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013;13:10439. DOIPubMedGoogle Scholar
  13. Phyo  AP, Nkhoma  S, Stepniewska  K, Ashley  EA, Nair  S, McGready  R, et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet. 2012;379:19606. DOIPubMedGoogle Scholar
  14. Cooper  RA, Conrad  MD, Watson  QD, Huezo  SJ, Ninsiima  H, Tumwebaze  P, et al. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob Agents Chemother. 2015;59:50614. DOIPubMedGoogle Scholar
  15. Menard  S, Tchoufack  JN, Maffo  CN, Nsango  SE, Iriart  X, Abate  L, et al. Insight into k13-propeller gene polymorphism and ex vivo DHA-response profiles from Cameroonian isolates. Malar J. 2016;15:572. DOIPubMedGoogle Scholar
  16. Wootton  JC, Feng  X, Ferdig  MT, Cooper  RA, Mu  J, Baruch  DI, et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature. 2002;418:3203. DOIPubMedGoogle Scholar
  17. Roper  C, Pearce  R, Nair  S, Sharp  B, Nosten  F, Anderson  T. Intercontinental spread of pyrimethamine-resistant malaria. Science. 2004;305:1124. DOIPubMedGoogle Scholar
  18. Mita  T, Venkatesan  M, Ohashi  J, Culleton  R, Takahashi  N, Tsukahara  T, et al. Limited geographical origin and global spread of sulfadoxine-resistant dhps alleles in Plasmodium falciparum populations. J Infect Dis. 2011;204:19808. DOIPubMedGoogle Scholar
  19. McCollum  AM, Poe  AC, Hamel  M, Huber  C, Zhou  Z, Shi  YP, et al. Antifolate resistance in Plasmodium falciparum: multiple origins and identification of novel dhfr alleles. J Infect Dis. 2006;194:18997. DOIPubMedGoogle Scholar
  20. Mita  T, Tanabe  K, Takahashi  N, Culleton  R, Ndounga  M, Dzodzomenyo  M, et al. Indigenous evolution of Plasmodium falciparum pyrimethamine resistance multiple times in Africa. J Antimicrob Chemother. 2009;63:2525. DOIPubMedGoogle Scholar
  21. Ariey  F, Witkowski  B, Amaratunga  C, Beghain  J, Langlois  AC, Khim  N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:505. DOIPubMedGoogle Scholar
  22. Ghorbal  M, Gorman  M, Macpherson  CR, Martins  RM, Scherf  A, Lopez-Rubio  JJ. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol. 2014;32:81921. DOIPubMedGoogle Scholar
  23. Straimer  J, Gnädig  NF, Witkowski  B, Amaratunga  C, Duru  V, Ramadani  AP, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:42831. DOIPubMedGoogle Scholar
  24. Ménard  D, Khim  N, Beghain  J, Adegnika  AA, Shafiul-Alam  M, Amodu  O, et al.; KARMA Consortium. KARMA Consortium. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374:245364. DOIPubMedGoogle Scholar
  25. Okello  PE, Van Bortel  W, Byaruhanga  AM, Correwyn  A, Roelants  P, Talisuna  A, et al. Variation in malaria transmission intensity in seven sites throughout Uganda. Am J Trop Med Hyg. 2006;75:21925.PubMedGoogle Scholar
  26. Uganda Bureau of Statistics. Malaria Indicator Survey 2009 [cited 2017 Dec 15]. https://dhsprogram.com/pubs/pdf/MIS6/MIS6.pdf
  27. Yeka  A, Gasasira  A, Mpimbaza  A, Achan  J, Nankabirwa  J, Nsobya  S, et al. Malaria in Uganda: challenges to control on the long road to elimination: I. Epidemiology and current control efforts. Acta Trop. 2012;121:18495. DOIPubMedGoogle Scholar
  28. Witkowski  B, Menard  D, Amaratunga  C, Fairhurst  RM. Ring-stage survival assays (RSA) to evaluate the in-vitro and ex-vivo susceptibility of Plasmodium falciparum to artemisinins [cited 2017 Dec 15]. http://www.wwarn.org/sites/default/files/attachments/procedures/INV10-Standard-Operating-Procedure-Ring-Stage-Survival-Assays-v1.2.pdf
  29. Dogovski  C, Xie  SC, Burgio  G, Bridgford  J, Mok  S, McCaw  JM, et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol. 2015;13:e1002132. DOIPubMedGoogle Scholar
  30. Noedl  H, Wernsdorfer  WH, Miller  RS, Wongsrichanalai  C. Histidine-rich protein II: a novel approach to malaria drug sensitivity testing. Antimicrob Agents Chemother. 2002;46:165864. DOIPubMedGoogle Scholar
  31. Le Nagard  H, Vincent  C, Mentré  F, Le Bras  J. Online analysis of in vitro resistance to antimalarial drugs through nonlinear regression. Comput Methods Programs Biomed. 2011;104:108. DOIPubMedGoogle Scholar
  32. Balikagala  B, Mita  T, Ikeda  M, Sakurai  M, Yatsushiro  S, Takahashi  N, et al. Absence of in vivo selection for K13 mutations after artemether-lumefantrine treatment in Uganda. Malar J. 2017;16:23. DOIPubMedGoogle Scholar
  33. Miotto  O, Amato  R, Ashley  EA, MacInnis  B, Almagro-Garcia  J, Amaratunga  C, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47:22634. DOIPubMedGoogle Scholar
  34. Pritchard  JK, Stephens  M, Donnelly  P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:94559.PubMedGoogle Scholar
  35. World Health Organization. World malaria report 2016. Geneva: The Organization; 2016.
  36. Fairhurst  RM, Dondorp  AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr. 2016;4.
  37. World Health Organization. Artemisinin and artemisinin-based combination therapy resistance. Status report. Geneva: The Organization; 2016.
  38. Boullé  M, Witkowski  B, Duru  V, Sriprawat  K, Nair  SK, McDew-White  M, et al. Artemisinin-resistant Plasmodium falciparum K13 mutant alleles, Thailand–Myanmar border. Emerg Infect Dis. 2016;22:15035. DOIPubMedGoogle Scholar
  39. Hott  A, Casandra  D, Sparks  KN, Morton  LC, Castanares  GG, Rutter  A, et al. Artemisinin-resistant Plasmodium falciparum parasites exhibit altered patterns of development in infected erythrocytes. Antimicrob Agents Chemother. 2015;59:315667. DOIPubMedGoogle Scholar
  40. Tacoli  C, Gai  PP, Bayingana  C, Sifft  K, Geus  D, Ndoli  J, et al. Artemisinin resistance-associated K13 polymorphisms of Plasmodium falciparum in southern Rwanda, 2010–2015. Am J Trop Med Hyg. 2016;95:10903. DOIPubMedGoogle Scholar
  41. Mukherjee  A, Bopp  S, Magistrado  P, Wong  W, Daniels  R, Demas  A, et al. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia. Malar J. 2017;16:195. DOIPubMedGoogle Scholar
  42. O’Neill  PM, Barton  VE, Ward  SA. The molecular mechanism of action of artemisinin—the debate continues. Molecules. 2010;15:170521. DOIPubMedGoogle Scholar
  43. Mbengue  A, Bhattacharjee  S, Pandharkar  T, Liu  H, Estiu  G, Stahelin  RV, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015;520:6837. DOIPubMedGoogle Scholar
  44. Mita  T, Tachibana  S, Hashimoto  M, Hirai  M. Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites. Expert Rev Anti Infect Ther. 2016;14:12535. DOIPubMedGoogle Scholar
  45. Paloque  L, Ramadani  AP, Mercereau-Puijalon  O, Augereau  JM, Benoit-Vical  F. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J. 2016;15:149. DOIPubMedGoogle Scholar
  46. Mok  S, Ashley  EA, Ferreira  PE, Zhu  L, Lin  Z, Yeo  T, et al. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347:4315. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: National Institute of Advanced Industrial Science and Technology, Kagawa, Japan.

2Current affiliation: Mildmay Uganda-KAMPALA, Kampala, Uganda.

3Current affiliation: Gunma University, Gunma, Japan.

4Deceased.

Page created: March 16, 2018
Page updated: March 16, 2018
Page reviewed: March 16, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external