Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 4—April 2018
Research

Phenotypic and Genotypic Characterization of Enterobacteriaceae Producing Oxacillinase-48–Like Carbapenemases, United States

Joseph D. LutgringComments to Author , Wenming Zhu, Tom J.B. de Man, Johannetsy J. Avillan, Karen F. Anderson, David R. Lonsway, Lori A. Rowe, Dhwani Batra, J. Kamile Rasheed, and Brandi M. Limbago
Author affiliations: Emory University School of Medicine, Atlanta, Georgia, USA (J.D. Lutgring); Centers for Disease Control and Prevention, Atlanta (J.D. Lutgring, W. Zhu, T.J.B. de Man, J.J. Avillan, K.F. Anderson, D.R. Lonsway, L.A. Rowe, D. Batra, J.K. Rasheed, B.M. Limbago)

Main Article

Figure 2

Sequence structure of 2 β-lactamase OXA-48 (blaOXA-48) plasmids tested during phenotypic and genotypic characterization of Enterobacteriaceae producing OXA-48–like carbapenemases, United States. Top plasmid is from isolate 23 in this study (pIncL_M_DHQP1400954) (72,093 bp), and bottom plasmid is from Chen et al. (44) (GenBank accession no. KP025948). Arrows indicate direction of transcription. Red arrows indicate other genes. Gray area indicates regions of homology, white lines indicate nonhomol

Figure 2. Sequence structure of 2 β-lactamase OXA-48 (blaOXA-48) plasmids tested during phenotypic and genotypic characterization of Enterobacteriaceae producing OXA-48–like carbapenemases, United States. Top plasmid is from isolate 23 in this study (pIncL_M_DHQP1400954) (72,093 bp), and bottom plasmid is from Chen et al. (44) (GenBank accession no. KP025948). Arrows indicate direction of transcription. Red arrows indicate other genes. Gray area indicates regions of homology, white lines indicate nonhomologous regions, and gray lines indicate inversions. aph, aminoglycoside; OXA, oxacillinase; repA, IncL/M type replicase; str, streptomycin.

Main Article

References
  1. Gupta  N, Limbago  BM, Patel  JB, Kallen  AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53:607. DOIPubMedGoogle Scholar
  2. Centers for Disease Control and Prevention (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep. 2013;62:16570.PubMedGoogle Scholar
  3. Patel  G, Huprikar  S, Factor  SH, Jenkins  SG, Calfee  DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29:1099106. DOIPubMedGoogle Scholar
  4. Walther-Rasmussen  J, Høiby  N. Class A carbapenemases. J Antimicrob Chemother. 2007;60:47082. DOIPubMedGoogle Scholar
  5. Guh  AY, Bulens  SN, Mu  Y, Jacob  JT, Reno  J, Scott  J, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015;314:147987. DOIPubMedGoogle Scholar
  6. Lascols  C, Peirano  G, Hackel  M, Laupland  KB, Pitout  JD. Surveillance and molecular epidemiology of Klebsiella pneumoniae isolates that produce carbapenemases: first report of OXA-48-like enzymes in North America. Antimicrob Agents Chemother. 2013;57:1306. DOIPubMedGoogle Scholar
  7. Mathers  AJ, Hazen  KC, Carroll  J, Yeh  AJ, Cox  HL, Bonomo  RA, et al. First clinical cases of OXA-48-producing carbapenem-resistant Klebsiella pneumoniae in the United States: the “menace” arrives in the new world. J Clin Microbiol. 2013;51:6803. DOIPubMedGoogle Scholar
  8. Doi  Y, O’Hara  JA, Lando  JF, Querry  AM, Townsend  BM, Pasculle  AW, et al. Co-production of NDM-1 and OXA-232 by Klebsiella pneumoniae. Emerg Infect Dis. 2014;20:1635. DOIPubMedGoogle Scholar
  9. Yang  S, Hemarajata  P, Hindler  J, Li  F, Adisetiyo  H, Aldrovandi  G, et al. Evolution and transmission of carbapenem-resistant Klebsiella pneumoniae expressing the blaOXA-232 gene during an institutional outbreak associated with endoscopic retrograde cholangiopancreatography. Clin Infect Dis. 2017;64:894901. DOIPubMedGoogle Scholar
  10. Rojas  LJ, Hujer  AM, Rudin  SD, Wright  MS, Domitrovic  TN, Marshall  SH, et al. NDM-5 and OXA-181 beta-lactamases, a significant threat continues to spread in the Americas. Antimicrob Agents Chemother. 2017;61:e0045417. DOIPubMedGoogle Scholar
  11. Poirel  L, Héritier  C, Tolün  V, Nordmann  P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48:1522. DOIPubMedGoogle Scholar
  12. Poirel  L, Potron  A, Nordmann  P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67:1597606. DOIPubMedGoogle Scholar
  13. Oteo  J, Hernández  JM, Espasa  M, Fleites  A, Sáez  D, Bautista  V, et al. Emergence of OXA-48-producing Klebsiella pneumoniae and the novel carbapenemases OXA-244 and OXA-245 in Spain. J Antimicrob Chemother. 2013;68:31721. DOIPubMedGoogle Scholar
  14. Sampaio  JL, Ribeiro  VB, Campos  JC, Rozales  FP, Magagnin  CM, Falci  DR, et al. Detection of OXA-370, an OXA-48-related class D β-lactamase, in Enterobacter hormaechei from Brazil. Antimicrob Agents Chemother. 2014;58:35667. DOIPubMedGoogle Scholar
  15. Meunier  D, Vickers  A, Pike  R, Hill  RL, Woodford  N, Hopkins  KL. Evaluation of the K-SeT R.E.S.I.S.T. immunochromatographic assay for the rapid detection of KPC and OXA-48-like carbapenemases. J Antimicrob Chemother. 2016;71:23579. DOIPubMedGoogle Scholar
  16. Pasteran  F, Denorme  L, Ote  I, Gomez  S, De Belder  D, Glupczynski  Y, et al. Rapid identification of OXA-48 and OXA-163 subfamilies in carbapenem-resistant gram-negative bacilli with a novel immunochromatographic lateral flow assay. J Clin Microbiol. 2016;54:28326. DOIPubMedGoogle Scholar
  17. Dortet  L, Naas  T. Noncarbapenemase OXA-48 variants (OXA-163 and OXA-405) falsely detected as carbapenemases by the β Carba test. J Clin Microbiol. 2017;55:6545. DOIPubMedGoogle Scholar
  18. Gomez  S, Pasteran  F, Faccone  D, Bettiol  M, Veliz  O, De Belder  D, et al. Intrapatient emergence of OXA-247: a novel carbapenemase found in a patient previously infected with OXA-163-producing Klebsiella pneumoniae. Clin Microbiol Infect. 2013;19:E2335. DOIPubMedGoogle Scholar
  19. Lyman  M, Walters  M, Lonsway  D, Rasheed  K, Limbago  B, Kallen  A. Notes from the field: carbapenem-resistant Enterobacteriaceae producing OXA-48-like carbapenemases—United States, 2010–2015. MMWR Morb Mortal Wkly Rep. 2015;64:13156. DOIPubMedGoogle Scholar
  20. Lascols  C, Bonaparte  S, Lonsway  D, Johnson  K, Robinson  G, Rasheed  K, et al. Snapshot of beta-lactam resistance in Enterobacteriaceae in the United States. Poster 1051. In: Abstracts of the 25th European Congress of Clinical Microbiology and Infectious Diseases, Copenhagen, Denmark, April 25–28, 2015. Abstract 1051 [cited 2018 Jan 26] https://www.escmid.org/dates_events/calendar/calendar_event/cal/2015/04/25/event/tx_cal_phpicalendar/25th_European_Congress_of_Clinical_Microbriology_and_Infectious_Diseases_ECCMID_2015/?tx_cal_controller%5Blastview%5D=view-search_event%7Cpage_id-130&cHash=fc21e6af2b4d39892216b2e8d30f0936
  21. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. 10th ed. (M07-A10). Wayne (PA): The Institute; 2015.
  22. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: twenty-seventh informational supplement. (M100-S27). Wayne (PA): The Institute; 2017.
  23. Conrad  S, Oethinger  M, Kaifel  K, Klotz  G, Marre  R, Kern  WV. gyrA mutations in high-level fluoroquinolone-resistant clinical isolates of Escherichia coli. J Antimicrob Chemother. 1996;38:44355. DOIPubMedGoogle Scholar
  24. Kitchel  B, Zhu  W, Travis  T, Limbago  BM, Rasheed  JK. Detection and evaluation of OXA-48 like carbapenemases by real-time PCR. Poster D-1139. In: Abstracts of the 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Denver, Colorado, September 10–13, 2013 cited 2018 Jan 26]. https://www.medscape.com/viewcollection/32893
  25. Cox  MP, Peterson  DA, Biggs  PJ, Solexa  QA. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics. 2010;11:485. DOIPubMedGoogle Scholar
  26. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  27. Li  H, Durbin  R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:58995. DOIPubMedGoogle Scholar
  28. Chin  CS, Alexander  DH, Marks  P, Klammer  AA, Drake  J, Heiner  C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:5639. DOIPubMedGoogle Scholar
  29. Inouye  M, Dashnow  H, Raven  LA, Schultz  MB, Pope  BJ, Tomita  T, et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 2014;6:90. DOIPubMedGoogle Scholar
  30. de Man  TJ, Limbago  BM. SSTAR: a stand-alone easy-to-use antimicrobial resistance gene predictor. mSphere. 2016;1:pii: e00050-25. PMID: 27303709.DOIGoogle Scholar
  31. Gupta  SK, Padmanabhan  BR, Diene  SM, Lopez-Rojas  R, Kempf  M, Landraud  L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58:21220. DOIPubMedGoogle Scholar
  32. Zankari  E, Hasman  H, Cosentino  S, Vestergaard  M, Rasmussen  S, Lund  O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:26404. DOIPubMedGoogle Scholar
  33. Carattoli  A, Zankari  E, García-Fernández  A, Voldby Larsen  M, Lund  O, Villa  L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895903. DOIPubMedGoogle Scholar
  34. Siguier  P, Perochon  J, Lestrade  L, Mahillon  J, Chandler  M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D326. DOIPubMedGoogle Scholar
  35. Potron  A, Nordmann  P, Rondinaud  E, Jaureguy  F, Poirel  L. A mosaic transposon encoding OXA-48 and CTX-M-15: towards pan-resistance. J Antimicrob Chemother. 2013;68:4767. DOIPubMedGoogle Scholar
  36. Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. Basic local alignment search tool. J Mol Biol. 1990;215:40310. DOIPubMedGoogle Scholar
  37. Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:13123. DOIPubMedGoogle Scholar
  38. Durfee  T, Nelson  R, Baldwin  S, Plunkett  G III, Burland  V, Mau  B, et al. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol. 2008;190:2597606. DOIPubMedGoogle Scholar
  39. Langmead  B, Salzberg  SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:3579. DOIPubMedGoogle Scholar
  40. Karim  A, Poirel  L, Nagarajan  S, Nordmann  P. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett. 2001;201:23741.PubMedGoogle Scholar
  41. McGann  P, Snesrud  E, Ong  AC, Appalla  L, Koren  M, Kwak  YI, et al. War wound treatment complications due to transfer of an IncN plasmid harboring bla(OXA-181) from Morganella morganii to CTX-M-27-producing sequence type 131 Escherichia coli. Antimicrob Agents Chemother. 2015;59:355662. DOIPubMedGoogle Scholar
  42. Potron  A, Nordmann  P, Lafeuille  E, Al Maskari  Z, Al Rashdi  F, Poirel  L. Characterization of OXA-181, a carbapenem-hydrolyzing class D beta-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55:48969. DOIPubMedGoogle Scholar
  43. Potron  A, Rondinaud  E, Poirel  L, Belmonte  O, Boyer  S, Camiade  S, et al. Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D β-lactamase from Enterobacteriaceae. Int J Antimicrob Agents. 2013;41:3259. DOIPubMedGoogle Scholar
  44. Chen  L, Al Laham  N, Chavda  KD, Mediavilla  JR, Jacobs  MR, Bonomo  RA, et al. First report of an OXA-48-producing multidrug-resistant Proteus mirabilis strain from Gaza, Palestine. Antimicrob Agents Chemother. 2015;59:43057. DOIPubMedGoogle Scholar
  45. Papagiannitsis  CC, Študentová  V, Izdebski  R, Oikonomou  O, Pfeifer  Y, Petinaki  E, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity. J Clin Microbiol. 2015;53:17315. DOIPubMedGoogle Scholar
  46. Tijet  N, Boyd  D, Patel  SN, Mulvey  MR, Melano  RG. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:457880. DOIPubMedGoogle Scholar
  47. Chea  N, Bulens  SN, Kongphet-Tran  T, Lynfield  R, Shaw  KM, Vagnone  PS, et al. Improved phenotype-based definition for identifying carbapenemase producers among carbapenem-resistant Enterobacteriaceae. Emerg Infect Dis. 2015;21:16116. DOIPubMedGoogle Scholar
  48. Carrër  A, Poirel  L, Eraksoy  H, Cagatay  AA, Badur  S, Nordmann  P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother. 2008;52:29504. DOIPubMedGoogle Scholar
  49. Poirel  L, Bonnin  RA, Nordmann  P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother. 2012;56:55962. DOIPubMedGoogle Scholar
  50. Villa  L, Carattoli  A, Nordmann  P, Carta  C, Poirel  L. Complete sequence of the IncT-type plasmid pT-OXA-181 carrying the blaOXA-181 carbapenemase gene from Citrobacter freundii. Antimicrob Agents Chemother. 2013;57:19657. DOIPubMedGoogle Scholar

Main Article

Page created: July 31, 2018
Page updated: July 31, 2018
Page reviewed: July 31, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external