Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 8—August 2018
Dispatch

Detection of Dengue Virus among Children with Suspected Malaria, Accra, Ghana

Nicholas Amoako, Samuel Duodu, Francis E. Dennis, Joseph H.K. Bonney, Kwaku P. Asante, Juliana Ameh, Lydia Mosi, Takaya Hayashi, Eudosia E. Agbosu, Deborah Pratt, Darwin J. Operario, Barry Fields, Jie Liu, Eric R. Houpt, George E. Armah, Justin Stoler, and Gordon A. AwandareComments to Author 
Author affiliations: University of Ghana, Legon, Ghana (N. Amoako, S. Duodu, F.E. Dennis, J.H.K. Bonney, L. Mosi, T. Hayashi, E.E. Agbosu, D. Pratt, G.E. Armah, G.A. Awandare); Kintampo Health Research Centre, Kintampo, Ghana (N. Amoako, K.P. Asante); Ledzokuku Krowor Municipal Assembly Hospital, Teshie, Accra, Ghana (J. Ameh); Tokyo Medical and Dental University, Tokyo, Japan (T. Hayashi); University of Virginia, Charlottesville, Virginia, USA (D.J. Operario, J. Liu, E.R. Houpt); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (B. Fields); University of Miami, Florida, USA (J. Stoler).

Main Article

Figure 2

Gel electrophoresis of dengue virus–specific RT-PCR products in study of dengue virus among 166 children with suspected malaria, Accra, Ghana, October 2016–July 2017. We completed a conventional RT-PCR assay by using dengue-specific primers from Lanciotti et al. (15) to confirm the results of the TaqMan array card assays. The amplification products (expected size 511 bp) were electrophoresed on 2% agarose gel, stained with ethidium bromide, and viewed under ultraviolet light. Lane 1, molecular w

Figure 2. Gel electrophoresis of dengue virus–specific RT-PCR products in study of dengue virus among 166 children with suspected malaria, Accra, Ghana, October 2016–July 2017. We completed a conventional RT-PCR assay by using dengue-specific primers from Lanciotti et al. (15) to confirm the results of the TaqMan array card assays. The amplification products (expected size 511 bp) were electrophoresed on 2% agarose gel, stained with ethidium bromide, and viewed under ultraviolet light. Lane 1, molecular weight marker; lanes 2 and 3, test samples; lanes 4 and 5, positive controls; lane 6, negative control; lane 7, empty; lane 8, molecular weight marker. RT-PCR, reverse transcription PCR.

Main Article

References
  1. Bisoffi  Z, Buonfrate  D. When fever is not malaria. Lancet Glob Health. 2013;1:e112. DOIPubMedGoogle Scholar
  2. Malm  KL, Bart-Plange  C, Armah  G, Gyapong  J, Adjei  SO, Koram  K, et al. Malaria as a cause of acute febrile illness in an urban pediatric population in Ghana. Am J Trop Med Hyg. 2012;5(Suppl 1):401.
  3. Isiguzo  C, Anyanti  J, Ujuju  C, Nwokolo  E, De La Cruz  A, Schatzkin  E, et al. Presumptive treatment of malaria from formal and informal drug vendors in Nigeria. PLoS One. 2014;9:e110361. DOIPubMedGoogle Scholar
  4. Stoler  J, Awandare  GA. Febrile illness diagnostics and the malaria-industrial complex: a socio-environmental perspective. BMC Infect Dis. 2016;16:683. DOIPubMedGoogle Scholar
  5. Oyero  OG, Ayukekbong  JA. High dengue NS1 antigenemia in febrile patients in Ibadan, Nigeria. Virus Res. 2014;191:5961. DOIPubMedGoogle Scholar
  6. Ridde  V, Agier  I, Bonnet  E, Carabali  M, Dabiré  KR, Fournet  F, et al. Presence of three dengue serotypes in Ouagadougou (Burkina Faso): research and public health implications. Infect Dis Poverty. 2016;5:23. DOIPubMedGoogle Scholar
  7. Tarnagda  Z, Cissé  A, Bicaba  BW, Diagbouga  S, Sagna  T, Ilboudo  AK, et al. Dengue Fever in Burkina Faso, 2016. Emerg Infect Dis. 2018;24:1702. DOIPubMedGoogle Scholar
  8. Stoler  J, Al Dashti  R, Anto  F, Fobil  JN, Awandare  GA. Deconstructing “malaria”: West Africa as the next front for dengue fever surveillance and control. Acta Trop. 2014;134:5865. DOIPubMedGoogle Scholar
  9. Liu  J, Ochieng  C, Wiersma  S, Ströher  U, Towner  JS, Whitmer  S, et al. Development of a TaqMan array card for acute-febrile-illness outbreak investigation and surveillance of emerging pathogens, including Ebola virus. J Clin Microbiol. 2016;54:4958. DOIPubMedGoogle Scholar
  10. Hogan  B, Eibach  D, Krumkamp  R, Sarpong  N, Dekker  D, Kreuels  B, et al. Malaria coinfections in febrile pediatric inpatients : a hospital-based study from Ghana. 2018;(March):3–10.
  11. Huhtamo  E, Uzcátegui  NY, Siikamäki  H, Saarinen  A, Piiparinen  H, Vaheri  A, et al. Molecular epidemiology of dengue virus strains from Finnish travelers. Emerg Infect Dis. 2008;14:803. DOIPubMedGoogle Scholar
  12. Stoler  J, Delimini  RK, Bonney  JHK, Oduro  AR, Owusu-Agyei  S, Fobil  JN, et al. Evidence of recent dengue exposure among malaria parasite-positive children in three urban centers in Ghana. Am J Trop Med Hyg. 2015;92:497500. DOIPubMedGoogle Scholar
  13. Centers for Disease Control and Prevention. Fact sheet for healthcare providers: interpreting Trioplex Real-time RT-PCR Assay (Trioplex rRT-PCR) results. 2017;(March). https://www.cdc.gov/zika/pdfs/Fact-sheet-for-HCP-EUA-Trioplex-RT-PCR-Zika.pdf
  14. Johnson  BW, Russell  BJ, Lanciotti  RS. Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol. 2005;43:497783. DOIPubMedGoogle Scholar
  15. Lanciotti  RS, Calisher  CH, Gubler  DJ, Chang  GJ, Vorndam  AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30:54551.PubMedGoogle Scholar

Main Article

Page created: July 18, 2018
Page updated: July 18, 2018
Page reviewed: July 18, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external