Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 12—December 2019
Dispatch

Distantly Related Rotaviruses in Common Shrews, Germany, 2004–2014

Reimar JohneComments to Author , Simon H. Tausch, Josephine Grützke, Alexander Falkenhagen, Corinna Patzina-Mehling, Martin Beer, Dirk Höper, and Rainer G. Ulrich
Author affiliations: German Federal Institute for Risk Assessment, Berlin, Germany (R. Johne, S.H. Tausch, J. Grützke, A. Falkenhagen, C. Patzina-Mehling); Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (M. Beer, D. Höper, R.G. Ulrich); Deutsches Zentrum für Infektionsforschung, partner site Hamburg-Lübeck-Borstel-Insel Riems, Germany (R.G. Ulrich)

Main Article

Figure 1

Distribution of common shrews (Sorex araneus) collected at monitoring sites (9) and additional sites (10) in Germany, 2004–2014, positive and negative for RVA, RVC-like, and RVH-like species by reverse transcription PCR. Numbers in white circles indicate the number of negative samples at that collection site; white circles without numbers indicate 1 negative sample at that site. Circles with multiple colors indicate animals with co-infections. The collection sites of the 2 samples analyzed in de

Figure 1. Distribution of common shrews (Sorex araneus) collected at monitoring sites (9) and additional sites (10) in Germany, 2004–2014, positive and negative for RVA, RVC-like, and RVH-like species by reverse transcription PCR. Numbers in white circles indicate the number of negative samples at that collection site; white circles without numbers indicate 1 negative sample at that site. Circles with multiple colors indicate animals with co-infections. The collection sites of the 2 samples analyzed in detail by next-generation sequencing (KS/12/0644 and KS/11/2281; tricolored circles) are indicated. RVA, rotavirus A; RVC, rotavirus C; RVH, rotavirus H.

Main Article

References
  1. Tate  JE, Burton  AH, Boschi-Pinto  C, Parashar  UD; World Health Organization–Coordinated Global Rotavirus Surveillance Network. Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000–2013. Clin Infect Dis. 2016;62(Suppl 2):S96105. DOIPubMedGoogle Scholar
  2. Attoui  H, Mertens  PPC, Becnel  J, Belaganahalli  S, Bergoin  M, Brussaard  CP, et al. Family: Reoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Amsterdam: Elsevier Academic Press; 2012. p. 541–637.
  3. Bányai  K, Kemenesi  G, Budinski  I, Földes  F, Zana  B, Marton  S, et al. Candidate new rotavirus species in Schreiber’s bats, Serbia. Infect Genet Evol. 2017;48:1926. DOIPubMedGoogle Scholar
  4. International Committee on Taxonomy of Viruses. Taxonomic information. Virus taxonomy: 2018b release. 2018 Jul [cited 2019 Aug 21]. https://talk.ictvonline.org/taxonomy
  5. Matthijnssens  J, Otto  PH, Ciarlet  M, Desselberger  U, Van Ranst  M, Johne  R. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch Virol. 2012;157:117782. DOIPubMedGoogle Scholar
  6. Matthijnssens  J, Ciarlet  M, Rahman  M, Attoui  H, Bányai  K, Estes  MK, et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol. 2008;153:16219. DOIPubMedGoogle Scholar
  7. Martella  V, Bányai  K, Matthijnssens  J, Buonavoglia  C, Ciarlet  M. Zoonotic aspects of rotaviruses. Vet Microbiol. 2010;140:24655. DOIPubMedGoogle Scholar
  8. Schlegel  M, Radosa  L, Rosenfeld  UM, Schmidt  S, Triebenbacher  C, Löhr  PW, et al. Broad geographical distribution and high genetic diversity of shrew-borne Seewis hantavirus in Central Europe. Virus Genes. 2012;45:4855. DOIPubMedGoogle Scholar
  9. Fischer  S, Mayer-Scholl  A, Imholt  C, Spierling  NG, Heuser  E, Schmidt  S, et al. Leptospira genomospecies and sequence type prevalence in small mammal populations in Germany. Vector Borne Zoonotic Dis. 2018;18:18899. DOIPubMedGoogle Scholar
  10. Mayer-Scholl  A, Hammerl  JA, Schmidt  S, Ulrich  RG, Pfeffer  M, Woll  D, et al. Leptospira spp. in rodents and shrews in Germany. Int J Environ Res Public Health. 2014;11:756274. DOIPubMedGoogle Scholar
  11. Scheuch  M, Höper  D, Beer  M. RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinformatics. 2015;16:69. DOIPubMedGoogle Scholar
  12. Tausch  SH, Renard  BY, Nitsche  A, Dabrowski  PW. RAMBO-K: rapid and sensitive removal of background sequences from next generation sequencing data. PLoS One. 2015;10:e0137896. DOIPubMedGoogle Scholar
  13. Wang  XX, Li  JX, Wang  WG, Sun  XM, He  CY, Dai  JJ. [Preliminary investigation of viruses to the wild tree shrews (Tupaia belangeri Chinese)]. Dongwuxue Yanjiu. 2011;32:669.PubMedGoogle Scholar
  14. Li  K, Lin  XD, Huang  KY, Zhang  B, Shi  M, Guo  WP, et al. Identification of novel and diverse rotaviruses in rodents and insectivores, and evidence of cross-species transmission into humans. Virology. 2016;494:16877. DOIPubMedGoogle Scholar
  15. Otto  PH, Rosenhain  S, Elschner  MC, Hotzel  H, Machnowska  P, Trojnar  E, et al. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Vet Microbiol. 2015;179:16876. DOIPubMedGoogle Scholar

Main Article

Page created: November 18, 2019
Page updated: November 18, 2019
Page reviewed: November 18, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external