Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 6—June 2019
Dispatch

New Delhi Metallo-β-Lactamase 5–Producing Klebsiella pneumoniae Sequence Type 258, Southwest China, 2017

Xin Zhang1, Weimin Wan1, Hua Yu1, Min Wang, Haifang Zhang, Jingnan Lv, Yi-Wei Tang, Barry N. Kreiswirth, Hong DuComments to Author , and Liang Chen
Author affiliations: Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan (X. Zhang, H. Yu); Memorial Sloan Kettering Cancer Center, New York, New York, USA (X. Zhang, Y.-W. Tang); The Second Affiliated Hospital of Soochow University, Suzhou, China (W. Wan, M. Wang, H. Zhang, J. Lv, H. Du); Rutgers University, Newark, New Jersey, USA (B.N. Kreiswirth, L. Chen)

Main Article

Figure 2

Phylogenetic analysis of KPC-producing and NDM-5–producing CG258 Klebsiella pneumoniae strains from China, 2017, and reference strains. A) Core SNP phylogenetic analysis of 76 global CG258 (ST258 and ST11) and 2 ST258 strains from China. Lane 1, Bla_carb; lane 2, wzi (cps); lane 3, integrative and conjugative element Kp258.2; lane 4, marR; lane 5, ompK35 gene (guanine insertion at nt position 121). The maximum-likelihood tree was rooted by using ST11 strains. Bootstrap values >90% are indicat

Figure 2. Phylogenetic analysis of KPC-producing and NDM-5–producing CG258 Klebsiella pneumoniae strains from China, 2017, and reference strains. A) Core SNP phylogenetic analysis of 76 global CG258 (ST258 and ST11) and 2 ST258 strains from China. Lane 1, Bla_carb; lane 2, wzi (cps); lane 3, integrative and conjugative element Kp258.2; lane 4, marR; lane 5, ompK35 gene (guanine insertion at nt position 121). The maximum-likelihood tree was rooted by using ST11 strains. Bootstrap values >90% are indicated as gray triangles at branch points. Sizes are proportion to values. Scale bar indicates nucleotide substitutions per site. B) Updated hypothesis of the molecular evolution of carbapenem-resistant K. pneumoniae ST258 (9). Bla, β-lactamase; Carb, carbapenemase; cps, capsular polysaccharide gene; ICE, integrative and conjugative element; ins, insertion; KPC, Klebsiella pneumoniae carbapenemase; MarR, transcriptional regulator protein of the multiple antimicrobial drug resistance repressor family; NDM, New Delhi metallo-β-lactamase; ompK35, outer membrane protein K35; OXA, oxacillinase; pKPC, plasmid carrying KPC; ST, sequence type; VIM-1, Verona integron–encoded metallo- β-lactamase 1; wzi, surface assembly of capsule gene.

Main Article

References
  1. Wyres  KL, Holt  KE. Klebsiella pneumoniae population genomics and antimicrobial-resistant cones. Trends Microbiol. 2016;24:94456. DOIPubMedGoogle Scholar
  2. Patel  G, Bonomo  RA. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol. 2013;4:48. DOIPubMedGoogle Scholar
  3. Chen  L, Mathema  B, Chavda  KD, DeLeo  FR, Bonomo  RA, Kreiswirth  BN. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22:68696. DOIPubMedGoogle Scholar
  4. Zhang  R, Liu  L, Zhou  H, Chan  EW, Li  J, Fang  Y, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine. 2017;19:98106. DOIPubMedGoogle Scholar
  5. Lascols  C, Peirano  G, Hackel  M, Laupland  KB, Pitout  JD. Surveillance and molecular epidemiology of Klebsiella pneumoniae isolates that produce carbapenemases: first report of OXA-48-like enzymes in North America. Antimicrob Agents Chemother. 2013;57:1306. DOIPubMedGoogle Scholar
  6. Navon-Venezia  S, Kondratyeva  K, Carattoli  A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41:25275. DOIPubMedGoogle Scholar
  7. Mathers  AJ, Peirano  G, Pitout  JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28:56591. DOIPubMedGoogle Scholar
  8. Pitout  JD, Nordmann  P, Poirel  L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59:587384. DOIPubMedGoogle Scholar
  9. Chen  L, Mathema  B, Pitout  JD, DeLeo  FR, Kreiswirth  BN. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. MBio. 2014;5:e0135514. DOIPubMedGoogle Scholar
  10. Bowers  JR, Kitchel  B, Driebe  EM, MacCannell  DR, Roe  C, Lemmer  D, et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One. 2015;10:e0133727. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: May 20, 2019
Page updated: May 20, 2019
Page reviewed: May 20, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external