Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 7—July 2019
CME ACTIVITY - Synopsis

Prescribing Patterns for Treatment of Mycobacterium avium Complex and M. xenopi Pulmonary Disease in Ontario, Canada, 2001–2013

Sarah K. BrodeComments to Author , Hannah Chung, Michael A. Campitelli, Jeffrey C. Kwong, Alex Marchand-Austin, Kevin L. Winthrop, Frances B. Jamieson, and Theodore K. Marras
Author affiliations: West Park Healthcare Centre, Toronto, Ontario, Canada (S.K. Brode); ICES, Toronto (S.K. Brode, H. Chung, M.A. Campitelli, J.C. Kwong); University of Toronto, Toronto (S.K. Brode, J.C. Kwong, F.B. Jamieson, T.K. Marras); University Health Network and Sinai Health System, Toronto (S.K. Brode, T.K. Marras); Toronto Western Family Health Team, Toronto (J.C. Kwong); Public Health Ontario, Toronto (J.C. Kwong, A. Marchand-Austin, F.B. Jamieson); Oregon Health and Science University, Portland, Oregon, USA (K.L. Winthrop)

Main Article

Table 4

Characteristics of MAC PD patients according to initial treatment regimen, Ontario, Canada, 2001–2013*

Characteristic Macrolide monotherapy, n = 95† Other regimen, n = 593 Unadjusted OR (95% CI) p value Adjusted OR (95% CI)‡ p value
Sex
F 52 (54.7) 357 (60.2) 0.80 (0.52–1.24) 0.314 0.92 (0.57–1.48) 0.738
M
43 (45.3) 
236 (39.8) 
Referent
 NA
Referent
NA 
Age, mean ± SD
76.21 ± 6.67
75.52 ± 5.81
1.02 (0.98–1.06)
0.292
1.03 (0.99–1.07)
0.123
Income quintile
1 (lowest) 19 (20.0) 123 (20.7) Referent 0.682 NA NA
2 22 (23.2) 124 (20.9) 1.15 (0.59–2.23) 0.470 NA NA
3 13 (13.7) 111 (18.7) 0.76 (0.36–1.61) 0.945 NA NA
4 16 (16.8) 101 (17.0) 1.03 (0.50–2.10) 0.752 NA NA
5 (highest) 21–25 (22.1–26.3) 134 (22.6) 1.11 (0.58–2.14) 0.986 NA NA
Missing data
<5 (≤2.1)
0
NA

NA
NA
Residency§
Rural <5 (<2.1) 35 (5.9) 0.33 (0.08–1.40) 0.132 NA NA
Suburban 8–12 (8.4–12.6) 79 (13.3) 0.73 (0.36–1.47) 0.378 NA NA
Urban
83 (87.4)
479 (80.8)
Referent
NA
NA
NA
ADGs, mean ± SD
10.45 ± 3.90
10.36 ± 3.42
1.01 (0.95–1.07)
0.805
NA
NA
Underlying conditions¶
Asthma 47 (49.5) 218 (36.8) 1.68 (1.09–2.60) 0.019 1.22 (0.72–2.07) 0.451
Bronchiectasis 27 (28.4) 142 (23.9) 1.26 (0.78–2.05) 0.347 1.19 (0.71–1.99) 0.504
Chronic kidney disease 7 (7.4) 133 (5.6) 1.35 (0.58–3.15) 0.486 NA NA
COPD 75 (78.9) 387 (65.3) 2.00 (1.19–3.36) 0.009 1.47 (0.81–2.66) 0.208
Diabetes mellitus 21 (22.1) 100 (16.9) 1.40 (0.82–2.38) 0.214 NA NA
GERD 21 (22.1) 118 (19.9) 1.14 (0.68–1.93) 0.619 NA NA
Interstitial lung disease 14 (14.7) 67 (11.3) 1.36 (0.73–2.53) 0.335 NA NA
Lung cancer <5 (<2.1) 17 (2.9) 0.73 (0.17–3.21) 0.676 NA NA
Rheumatoid arthritis
<5 (<2.1)
25 (4.2)
0.49 (0.11–2.10)
0.335
NA
NA
Drug exposure within 1 y#
Short-acting BD 49 (51.6) 271 (45.7) 1.27 (0.82–1.95) 0.287 0.69 (0.38–1.26) 0.225
Long-acting BD 52 (54.7) 248 (41.8) 1.68 (1.09–2.60) 0.019 1.16 (0.56–2.39) 0.694
ICS 55 (57.9) 287 (48.4) 1.47 (0.95–2.27) 0.087 0.89 (0.42–1.87) 0.754
OCS 38 (40.0) 130 (21.9) 2.37 (1.51–3.74) <0.001 2.01 (1.16–3.50) 0.013
Methylxanthine
9 (9.5)
28 (4.7)
2.11 (0.96–4.63)
0.062
1.52 (0.64–3.57)
0.340
ED visit/hospitalization for asthma or COPD within 2 y#
22 (23.2)
88 (14.8)
1.73 (1.02–2.93)
0.042
0.92 (0.48–1.77)
0.799
Prior/current home oxygen therapy
12 (12.6)
31 (5.2)
2.62 (1.30–5.31)
0.007
1.83 (0.84–3.98)
0.128
PFTs within 5 y#
78 (82.1)
416 (70.2)
1.95 (1.12–3.39)
0.018
1.52 (0.82–2.78)
0.180
Pulmonologist prescriber 55 (57.9) 328 (55.3) 1.11 (0.72–1.72) 0.638 1.03 (0.66–1.63) 0.889

*Values are no. (%) except as indicated. According to privacy regulations, values representing <6 persons are reported as <5, and data are presented as a range of values for categorical variables where back-calculation is possible. ADGs, aggregated diagnostic groups (from the adjusted clinical group case mix system); BD, bronchodilator; COPD, chronic obstructive pulmonary disease; ED, emergency department; GERD, gastroesophageal reflux disease; ICS, inhaled corticosteroid; MAC, Mycobacterium avium complex; NA, not applicable; NTM, nontuberculous mycobacteria; OCS, oral corticosteroid; OR, odds ratio; PD, pulmonary disease; PFTs, pulmonary function tests.
†Macrolide monotherapy was the first antibiotic regimen given after NTM PD diagnosis, and was considered ≥60 d with no companion drugs of interest.
‡Variables were selected for inclusion in the multivariable model a priori, based on clinical relevance.
§Derived from rural index for Ontario group, a measure of rurality designed for Ontario (9).
¶Defined according to inpatient and outpatient diagnostic codes in databases of hospital discharges and physicians’ services claims, respectively. Definitions have been validated for all underlying conditions with the exception of bronchiectasis and interstitial lung disease.
#Before NTM PD diagnosis.

Main Article

References
  1. Marras  TK, Mendelson  D, Marchand-Austin  A, May  K, Jamieson  FB. Pulmonary nontuberculous mycobacterial disease, Ontario, Canada, 1998-2010. Emerg Infect Dis. 2013;19:188991. DOIPubMedGoogle Scholar
  2. Henkle  E, Hedberg  K, Schafer  S, Novosad  S, Winthrop  KL. Population-based incidence of pulmonary nontuberculous mycobacterial disease in Oregon 2007 to 2012. Ann Am Thorac Soc. 2015;12:6427. DOIPubMedGoogle Scholar
  3. Adjemian  J, Olivier  KN, Seitz  AE, Holland  SM, Prevots  DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185:8816. DOIPubMedGoogle Scholar
  4. Griffith  DE, Aksamit  T, Brown-Elliott  BA, Catanzaro  A, Daley  C, Gordin  F, et al.; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367416. DOIPubMedGoogle Scholar
  5. Adjemian  J, Prevots  DR, Gallagher  J, Heap  K, Gupta  R, Griffith  D. Lack of adherence to evidence-based treatment guidelines for nontuberculous mycobacterial lung disease. Ann Am Thorac Soc. 2014;11:916. DOIPubMedGoogle Scholar
  6. van Ingen  J, Wagner  D, Gallagher  J, Morimoto  K, Lange  C, Haworth  CS, et al.; NTM-NET. Poor adherence to management guidelines in nontuberculous mycobacterial pulmonary diseases. Eur Respir J. 2017;49:1601855. DOIPubMedGoogle Scholar
  7. Brode  SK, Jamieson  FB, Ng  R, Campitelli  MA, Kwong  JC, Paterson  JM, et al. Risk of mycobacterial infections associated with rheumatoid arthritis in Ontario, Canada. Chest. 2014;146:56372. DOIPubMedGoogle Scholar
  8. Al Houqani  M, Jamieson  F, Chedore  P, Mehta  M, May  K, Marras  TK. Isolation prevalence of pulmonary nontuberculous mycobacteria in Ontario in 2007. Can Respir J. 2011;18:1924. DOIPubMedGoogle Scholar
  9. Kralj  B. Measuring “rurality” for purposes of health-care planning: an empirical measure for Ontario. Ontario Medical Review. 2000;10:33–52.
  10. Hux  JE, Ivis  F, Flintoft  V, Bica  A. Diabetes in Ontario: determination of prevalence and incidence using a validated administrative data algorithm. Diabetes Care. 2002;25:5126. DOIPubMedGoogle Scholar
  11. Lopushinsky  SR, Covarrubia  KA, Rabeneck  L, Austin  PC, Urbach  DR. Accuracy of administrative health data for the diagnosis of upper gastrointestinal diseases. Surg Endosc. 2007;21:17337. DOIPubMedGoogle Scholar
  12. Widdifield  J, Bombardier  C, Bernatsky  S, Paterson  JM, Green  D, Young  J, et al. An administrative data validation study of the accuracy of algorithms for identifying rheumatoid arthritis: the influence of the reference standard on algorithm performance. BMC Musculoskelet Disord. 2014;15:216. DOIPubMedGoogle Scholar
  13. Reid  RJ, MacWilliam  L, Verhulst  L, Roos  N, Atkinson  M. Performance of the ACG case-mix system in two Canadian provinces. Med Care. 2001;39:8699. DOIPubMedGoogle Scholar
  14. Gershon  AS, Wang  C, Guan  J, Vasilevska-Ristovska  J, Cicutto  L, To  T. Identifying patients with physician-diagnosed asthma in health administrative databases. Can Respir J. 2009;16:1838. DOIPubMedGoogle Scholar
  15. Gershon  AS, Wang  C, Guan  J, Vasilevska-Ristovska  J, Cicutto  L, To  T. Identifying individuals with physcian diagnosed COPD in health administrative databases. COPD. 2009;6:38894. DOIPubMedGoogle Scholar
  16. Fleet  JL, Dixon  SN, Shariff  SZ, Quinn  RR, Nash  DM, Harel  Z, et al. Detecting chronic kidney disease in population-based administrative databases using an algorithm of hospital encounter and physician claim codes. BMC Nephrol. 2013;14:81. DOIPubMedGoogle Scholar
  17. Griffith  DE, Brown-Elliott  BA, Langsjoen  B, Zhang  Y, Pan  X, Girard  W, et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006;174:92834. DOIPubMedGoogle Scholar
  18. Morimoto  K, Namkoong  H, Hasegawa  N, Nakagawa  T, Morino  E, Shiraishi  Y, et al.; Nontuberculous Mycobacteriosis Japan Research Consortium. Macrolide-resistant Mycobacterium avium complex lung disease: analysis of 102 consecutive cases. Ann Am Thorac Soc. 2016;13:190411. DOIPubMedGoogle Scholar
  19. Moon  SM, Park  HY, Kim  SY, Jhun  BW, Lee  H, Jeon  K, et al. Clinical characteristics, treatment outcomes, and resistance mutations associated with macrolide-resistant Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2016;60:675865. DOIPubMedGoogle Scholar
  20. Hwang  JA, Kim  S, Jo  KW, Shim  TS. Natural history of Mycobacterium avium complex lung disease in untreated patients with stable course. Eur Respir J. 2017;49:1600537. DOIPubMedGoogle Scholar
  21. Diel  R, Jacob  J, Lampenius  N, Loebinger  M, Nienhaus  A, Rabe  KF, et al. Burden of non-tuberculous mycobacterial pulmonary disease in Germany. Eur Respir J. 2017;49:1602109. DOIPubMedGoogle Scholar
  22. Henkle  E, Novosad  SA, Shafer  S, Hedberg  K, Siegel  SAR, Ku  J, et al. Long-term outcomes in a population-based cohort with respiratory nontuberculous mycobacteria isolation. Ann Am Thorac Soc. 2017;14:11208. DOIPubMedGoogle Scholar
  23. Prevots  DR, Shaw  PA, Strickland  D, Jackson  LA, Raebel  MA, Blosky  MA, et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med. 2010;182:9706. DOIPubMedGoogle Scholar
  24. Dunlop  S, Coyte  PC, McIsaac  W. Socio-economic status and the utilisation of physicians’ services: results from the Canadian National Population Health Survey. Soc Sci Med. 2000;51:12333. DOIPubMedGoogle Scholar
  25. Tran  C, Wijeysundera  HC, Qui  F, Tu  JV, Bhatia  RS. Comparing the ambulatory care and outcomes for rural and urban patients with chronic ischemic heart disease: a population-based cohort study. Circ Cardiovasc Qual Outcomes. 2014;7:83543. DOIPubMedGoogle Scholar
  26. Benchimol  EI, Kuenzig  ME, Bernstein  CN, Nguyen  GC, Guttmann  A, Jones  JL, et al.; Canadian Gastro-Intestinal Epidemiology Consortium. Rural and urban disparities in the care of Canadian patients with inflammatory bowel disease: a population-based study. Clin Epidemiol. 2018;10:161326. DOIPubMedGoogle Scholar
  27. Andréjak  C, Lescure  FX, Pukenyte  E, Douadi  Y, Yazdanpanah  Y, Laurans  G, et al.; Xenopi Group. Mycobacterium xenopi pulmonary infections: a multicentric retrospective study of 136 cases in north-east France. Thorax. 2009;64:2916. DOIPubMedGoogle Scholar
  28. Medical Section of the American Lung Association. Diagnosis and treatment of disease caused by nontuberculous mycobacteria. This official statement of the American Thoracic Society was approved by the Board of Directors, March 1997. Am J Respir Crit Care Med. 1997;156:S125.PubMedGoogle Scholar
  29. Klemens  SP, Cynamon  MH. Activities of azithromycin and clarithromycin against nontuberculous mycobacteria in beige mice. Antimicrob Agents Chemother. 1994;38:14559. DOIPubMedGoogle Scholar
  30. Roche  B, Rozenberg  S, Cambau  E, Desplaces  N, Dion  E, Dubourg  G, et al. Efficacy of combined clarithromycin and sparfloxacin therapy in a patient with discitis: due to Mycobacterium xenopi. Rev Rhum Engl Ed. 1997;64:645.PubMedGoogle Scholar
  31. Schmitt  H, Schnitzler  N, Riehl  J, Adam  G, Sieberth  HG, Haase  G. Successful treatment of pulmonary Mycobacterium xenopi infection in a natural killer cell-deficient patient with clarithromycin, rifabutin, and sparfloxacin. Clin Infect Dis. 1999;29:1204. DOIPubMedGoogle Scholar
  32. Subcommittee of the Joint Tuberculosis Committee of the British Thoracic Society. Management of opportunist mycobacterial infections: Joint Tuberculosis Committee Guidelines 1999. Thorax. 2000;55:2108. DOIPubMedGoogle Scholar
  33. Wallace  RJ Jr, Brown-Elliott  BA, McNulty  S, Philley  JV, Killingley  J, Wilson  RW, et al. Macrolide/Azalide therapy for nodular/bronchiectatic mycobacterium avium complex lung disease. Chest. 2014;146:27682. DOIPubMedGoogle Scholar
  34. Jeong  BH, Jeon  K, Park  HY, Kim  SY, Lee  KS, Huh  HJ, et al. Intermittent antibiotic therapy for nodular bronchiectatic Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2015;191:96103. DOIPubMedGoogle Scholar

Main Article

Page created: June 17, 2019
Page updated: June 17, 2019
Page reviewed: June 17, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external