High Pathogenicity of Nipah Virus from Pteropus lylei Fruit Bats, Cambodia
Maria Gaudino, Noémie Aurine, Claire Dumont, Julien Fouret, Marion Ferren, Cyrille Mathieu, Olivier Reynard, Viktor E. Volchkov, Catherine Legras-Lachuer, Marie-Claude Georges-Courbot, and Branka Horvat
Author affiliations: Centre International de Recherche en Infectiologie, CIRI, INSERM U1111, CNRS, UMR5308, Univ Lyon, University Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France (M. Gaudino, N. Aurine, C. Dumont, J. Fouret, M. Ferren, C. Mathieu, O. Reynard, V.E. Volchkov, M.-C. Georges-Courbot, B. Horvat); ViroScan 3D, Trévoux, France (J. Fouret, C. Legras-Lachuer); University Claude Bernard Lyon 1, LEM, UMR5557, CNRS, INRA, VetAgro Sup, Lyon (C. Legras-Lachuer); Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, INSERM P4, Jean Mérieux, Lyon (M.-C. Georges-Courbot)
Main Article
Figure 2
Figure 2. Multiple alignment of the phosphoprotein gene of Nipah virus CSUR381, Cambodia, 2003, and other henipavirus isolates. The highly conserved editing site (5′-AAAAAGGG-3′, red outline) is present in all Nipah and Hendra virus sequences but absent in the nonpathogenic Cedar virus sequence. GenBank accession numbers are provided for all isolates.
Main Article
Page created: December 18, 2019
Page updated: December 18, 2019
Page reviewed: December 18, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.