Volume 27, Number 6—June 2021
Research
Increased Incidence of Antimicrobial-Resistant Nontyphoidal Salmonella Infections, United States, 2004–2016
Table 1
Resistance category | No. (%) isolates |
|||||||
---|---|---|---|---|---|---|---|---|
Enteritidis, n = 5,206 | Typhimurium, n = 4,404 | Newport, n = 3,140 | I 4,[5],12:i:-, n = 1,158 | Heidelberg, n = 974 | Other fully serotyped, n = 12,878 | Not fully serotyped, n = 505 | Total nontyphoidal Salmonella, N = 28,265 | |
Any clinically important resistance† | 548 (10.5) | 1,197 (27.2) | 284 (9.0) | 389 (33.6) | 240 (24.6) | 843 (6.5) | 45 (8.9) | 3,546 (12.5) |
Multidrug resistance‡ | 114 (2.2) | 1,178 (26.7) | 271 (8.6) | 382 (33.0) | 204 (20.9) | 727 (5.6) | 36 (7.1) | 2,912 (10.3) |
Amp-only§ | 152 (2.9) | 897 (20.4) | 30 (1.0) | 319 (27.5) | 120 (12.3) | 311 (2.4) | 28 (5.5) | 1,857 (6.6) |
Cef/Amp§¶ | 15 (0.3) | 212 (4.8) | 237 (7.5) | 39 (3.4) | 116 (11.9) | 212 (1.6) | 4 (0.8) | 835 (3.0) |
Cipro§# | 381 (7.3) | 88 (2.0) | 17 (0.5) | 31 (2.7) | 4 (0.4) | 320 (2.5) | 13 (2.6) | 854 (3.0) |
*Amp-only, resistant to ampicillin (MIC >32 µg/mL) but susceptible to ceftriaxone and ciprofloxacin; Cef/Amp, resistant to ceftriaxone (MIC >4 µg/mL) and ampicillin; Cipro, nonsusceptible to ciprofloxacin (MIC >0.12 µg/mL) but susceptible to ceftriaxone; NTS, nontyphoidal Salmonella, which includes isolates serotyped as Enteritidis, Typhimurium, Newport, I 4,[5],12:i:-, and Heidelberg, isolates serotyped as other than those 5, and those not fully serotyped. †Includes any of the 3 clinically important resistance patterns (i.e., resistant to ceftriaxone, resistant to ampicillin, or nonsusceptible to ciprofloxacin). Isolates might have resistance to other agents tested. ‡Resistant to >3 classes of antimicrobial agents. §Amp-only, Cef/Amp, and Cipro are mutually exclusive categories of clinically important resistance. ¶Of the 835 isolates with Cef/Amp resistance, 78 (0.3% of all nontyphoidal Salmonella isolates) were nonsusceptible to ciprofloxacin. Of the 78 isolates, 71 (91%) had ciprofloxacin MICs within the intermediate range (i.e., 0.12–0.5) (Appendix Figure 6). These 78 isolates were not included in the Cipro category. #Of the 854 isolates, 785 (92%) had ciprofloxacin MICs within the intermediate range (Appendix Figure 6).
References
- Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17:7–15. DOIPubMedGoogle Scholar
- Pegues DA, Miller SI. Salmonella Species. In: John E. Bennett, Raphael Dolin, Blaser. MJ, eds. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Philadelphia: Elsevier Saunders; 2020. p. 2725–36.
- Varma JK, Greene KD, Ovitt J, Barrett TJ, Medalla F, Angulo FJ. Hospitalization and antimicrobial resistance in Salmonella outbreaks, 1984-2002. Emerg Infect Dis. 2005;11:943–6. DOIPubMedGoogle Scholar
- Krueger AL, Greene SA, Barzilay EJ, Henao O, Vugia D, Hanna S, et al. Clinical outcomes of nalidixic acid, ceftriaxone, and multidrug-resistant nontyphoidal salmonella infections compared with pansusceptible infections in FoodNet sites, 2006-2008. Foodborne Pathog Dis. 2014;11:335–41. DOIPubMedGoogle Scholar
- Varma JK, Molbak K, Barrett TJ, Beebe JL, Jones TF, Rabatsky-Ehr T, et al. Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalizations. J Infect Dis. 2005;191:554–61. DOIPubMedGoogle Scholar
- Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis. 2003;37:75–81. DOIPubMedGoogle Scholar
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 31st edition (M100). Wayne (PA): The Institute; 2021.
- Johnson LR, Gould LH, Dunn JR, Berkelman R, Mahon BE; Foodnet Travel Working Group. Salmonella infections associated with international travel: a Foodborne Diseases Active Surveillance Network (FoodNet) study. Foodborne Pathog Dis. 2011;8:1031–7. DOIPubMedGoogle Scholar
- Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ; Centers for Disease Control and Prevention. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveill Summ. 2018;67:1–11. DOIPubMedGoogle Scholar
- Kozlica J, Claudet AL, Solomon D, Dunn JR, Carpenter LR. Waterborne outbreak of Salmonella I 4,[5],12:i:-. Foodborne Pathog Dis. 2010;7:1431–3. DOIPubMedGoogle Scholar
- Marder Mph EP, Griffin PM, Cieslak PR, Dunn J, Hurd S, Jervis R, et al.; Centers for Disease Control and Prevention. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2006–2017. MMWR Morb Mortal Wkly Rep. 2018;67:324–8. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Multistate outbreaks of Salmonella infections linked to contact with live poultry in backyard flocks, 2018 (final update). 2018 Sep 13 [cited 2020 Oct 29]. https://www.cdc.gov/salmonella/backyard-flocks-06-18/index.html
- Huang JY, Patrick ME, Manners J, Sapkota AR, Scherzinger KJ, Tobin-D’Angelo M, et al. Association between wetland presence and incidence of Salmonella enterica serotype Javiana infections in selected US sites, 2005-2011. Epidemiol Infect. 2017;145:2991–7. DOIPubMedGoogle Scholar
- Dechet AM, Scallan E, Gensheimer K, Hoekstra R, Gunderman-King J, Lockett J, et al.; Multistate Working Group. Outbreak of multidrug-resistant Salmonella enterica serotype Typhimurium Definitive Type 104 infection linked to commercial ground beef, northeastern United States, 2003-2004. Clin Infect Dis. 2006;42:747–52. DOIPubMedGoogle Scholar
- Varma JK, Marcus R, Stenzel SA, Hanna SS, Gettner S, Anderson BJ, et al. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002-2003. J Infect Dis. 2006;194:222–30. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): human isolates final report, 2015. Atlanta: The Centers; 2018.
- Centers for Disease Control and Prevention. National Salmonella Surveillance [cited 2020 Oct 29]. https://www.cdc.gov/nationalsurveillance/salmonella-surveillance.html
- Centers for Disease Control and Prevention. National Antimicrobial Resistance Monitoring System for Enteric Bacteria [cited 2020 Oct 29]. https://www.cdc.gov/narms/reports/index.html
- Medalla F, Hoekstra RM, Whichard JM, Barzilay EJ, Chiller TM, Joyce K, et al. Increase in resistance to ceftriaxone and nonsusceptibility to ciprofloxacin and decrease in multidrug resistance among Salmonella strains, United States, 1996-2009. Foodborne Pathog Dis. 2013;10:302–9. DOIPubMedGoogle Scholar
- Medalla F, Gu W, Mahon BE, Judd M, Folster J, Griffin PM, et al. Estimated incidence of antimicrobial drug–resistant nontyphoidal Salmonella infections, United States, 2004–2012. Emerg Infect Dis. 2016;23:29–37. DOIPubMedGoogle Scholar
- Greene SK, Stuart AM, Medalla FM, Whichard JM, Hoekstra RM, Chiller TM. Distribution of multidrug-resistant human isolates of MDR-ACSSuT Salmonella Typhimurium and MDR-AmpC Salmonella Newport in the United States, 2003-2005. Foodborne Pathog Dis. 2008;5:669–80. DOIPubMedGoogle Scholar
- Crim SM, Chai SJ, Karp BE, Judd MC, Reynolds J, Swanson KC, et al. Salmonella enterica serotype Newport infections in the United States, 2004–2013: increased incidence investigated through four surveillance systems. Foodborne Pathog Dis. 2018;15:612–20. DOIPubMedGoogle Scholar
- Jones TF, Ingram LA, Cieslak PR, Vugia DJ, Tobin-D’Angelo M, Hurd S, et al. Salmonellosis outcomes differ substantially by serotype. J Infect Dis. 2008;198:109–14. DOIPubMedGoogle Scholar
- US Food and Drug Administration. 2018 NARMS update: integrated report summary interactive version [cited 2020 Dec 28]. https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/2018-narms-update-integrated-report-summary-interactive-version
- US Census Bureau. Population and housing unit estimates [cited 2020 Oct 29]. https://www.census.gov/popest
- Gu W, Medalla F, Hoekstra RM. Bayesian hierarchical model of ceftriaxone resistance proportions among Salmonella serotype Heidelberg infections. Spat Spatio-Temporal Epidemiol. 2018;24:19–26. DOIPubMedGoogle Scholar
- Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10:325–37. DOIGoogle Scholar
- Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med. 2005;24:2401–28. DOIPubMedGoogle Scholar
- Chai SJ, White PL, Lathrop SL, Solghan SM, Medus C, McGlinchey BM, et al. Salmonella enterica serotype Enteritidis: increasing incidence of domestically acquired infections. Clin Infect Dis. 2012;54(Suppl 5):S488–97. DOIPubMedGoogle Scholar
- Marcus R, Varma JK, Medus C, Boothe EJ, Anderson BJ, Crume T, et al.; Emerging Infections Program FoodNet Working Group. Re-assessment of risk factors for sporadic Salmonella serotype Enteritidis infections: a case-control study in five FoodNet Sites, 2002-2003. Epidemiol Infect. 2007;135:84–92. DOIPubMedGoogle Scholar
- O’Donnell AT, Vieira AR, Huang JY, Whichard J, Cole D, Karp BE. Quinolone-resistant Salmonella enterica serotype Enteritidis infections associated with international travel. Clin Infect Dis. 2014;59:e139–41. DOIPubMedGoogle Scholar
- Grass JE, Kim S, Huang JY, Morrison SM, McCullough AE, Bennett C, et al. Quinolone nonsusceptibility among enteric pathogens isolated from international travelers - Foodborne Diseases Active Surveillance Network (FoodNet) and National Antimicrobial Monitoring System (NARMS), 10 United States sites, 2004 - 2014. PLoS One. 2019;14:
e0225800 . DOIPubMedGoogle Scholar - Harvey RR, Friedman CR, Crim SM, Judd M, Barrett KA, Tolar B, et al. Epidemiology of Salmonella enterica serotype Dublin infections among humans, United States, 1968–2013. Emerg Infect Dis. 2017;23:1493–501. DOIPubMedGoogle Scholar
- Elnekave E, Hong S, Mather AE, Boxrud D, Taylor AJ, Lappi V, et al. Salmonella enterica serotype 4,[5],12:i:- in swine in the United States Midwest: an emerging multidrug-resistant clade. Clin Infect Dis. 2018;66:877–85. DOIPubMedGoogle Scholar
- Rabatsky-Ehr T, Whichard J, Rossiter S, Holland B, Stamey K, Headrick ML, et al.; NARMS Working Group. Multidrug-resistant strains of Salmonella enterica Typhimurium, United States, 1997-1998. Emerg Infect Dis. 2004;10:795–801. DOIPubMedGoogle Scholar
- Leekitcharoenphon P, Hendriksen RS, Le Hello S, Weill FX, Baggesen DL, Jun SR, et al. Global genomic epidemiology of Salmonella enterica Serovar Typhimurium DT104. Appl Environ Microbiol. 2016;82:2516–26. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Multistate outbreak of multidrug-resistant Salmonella I 4,[5],12:i:- and Salmonella Infantis infections linked to pork (final update) [cited 2020 Oct 29]. https://www.cdc.gov/salmonella/pork-08-15/index.html
- US Department of Agriculture, National Agricultural Statistics Service. Quarterly hogs and pigs. 2021 Mar 25 [cited 2021 Apr 19]. https://downloads.usda.library.cornell.edu/usda-esmis/files/rj430453j/7p88db205/mw22w1890/hgpg0321.pdf
- US Department of Agriculture, Economic Research Service. Factors affecting U.S. pork consumption/LDP-M-130–01. 2005 May [cited 2020 Oct 29]. https://www.ers.usda.gov/webdocs/outlooks/37377/15778_ldpm13001_1_.pdf?v=5280.8
- US Department of Commerce. National Travel and Tourism Office. U.S. travel and tourism statistics (U.S. resident outbound) [cited 2020 Oct 29]. https://travel.trade.gov/outreachpages/outbound.general_information.outbound_overview.asp
- Threlfall EJ, Day M, de Pinna E, Charlett A, Goodyear KL. Assessment of factors contributing to changes in the incidence of antimicrobial drug resistance in Salmonella enterica serotypes Enteritidis and Typhimurium from humans in England and Wales in 2000, 2002 and 2004. Int J Antimicrob Agents. 2006;28:389–95. DOIPubMedGoogle Scholar
- Bae D, Kweon O, Khan AA. Isolation and characterization of antimicrobial-resistant nontyphoidal Salmonella enterica serovars from imported food products. J Food Prot. 2016;79:1348–54. DOIPubMedGoogle Scholar
- Karp BE, Campbell D, Chen JC, Folster JP, Friedman CR. Plasmid-mediated quinolone resistance in human non-typhoidal Salmonella infections: An emerging public health problem in the United States. Zoonoses Public Health. 2018;65:838–49. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet 2015 surveillance report (final update). Atlanta: The Centers; 2017.
- Scallan E, Crim SM, Runkle A, Henao OL, Mahon BE, Hoekstra RM, et al. Bacterial enteric infections among older adults in the United States: Foodborne Diseases Active Surveillance Network, 1996–2012. Foodborne Pathog Dis. 2015;12:492–9. DOIPubMedGoogle Scholar
- Angelo KM, Reynolds J, Karp BE, Hoekstra RM, Scheel CM, Friedman C. Antimicrobial resistance among nontyphoidal Salmonella isolated from blood in the United States, 2003–2013. J Infect Dis. 2016;214:1565–70. DOIPubMedGoogle Scholar
- Crump JA, Medalla FM, Joyce KW, Krueger AL, Hoekstra RM, Whichard JM, et al.; Emerging Infections Program NARMS Working Group. Antimicrobial resistance among invasive nontyphoidal Salmonella enterica isolates in the United States: National Antimicrobial Resistance Monitoring System, 1996 to 2007. Antimicrob Agents Chemother. 2011;55:1148–54. DOIPubMedGoogle Scholar
- Boore AL, Hoekstra RM, Iwamoto M, Fields PI, Bishop RD, Swerdlow DL. Salmonella enterica infections in the United States and assessment of coefficients of variation: a novel approach to identify epidemiologic characteristics of individual serotypes, 1996–2011. PLoS One. 2015;10:
e0145416 . DOIPubMedGoogle Scholar - McDermott PF, Tyson GH, Kabera C, Chen Y, Li C, Folster JP, et al. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother. 2016;60:5515–20. DOIPubMedGoogle Scholar
- Karp BE, Tate H, Plumblee JR, Dessai U, Whichard JM, Thacker EL, et al. National Antimicrobial Resistance Monitoring System: two decades of advancing public health through integrated surveillance of antimicrobial resistance. Foodborne Pathog Dis. 2017;14:545–57. DOIPubMedGoogle Scholar