Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 28, Number 4—April 2022
Research

Genomic Epidemiology of Early SARS-CoV-2 Transmission Dynamics, Gujarat, India

Jayna RaghwaniComments to Author , Louis du Plessis, John T. McCrone, Sarah C. Hill, Kris V. Parag, Julien Thézé, Dinesh Kumar, Apurva Puvar, Ramesh Pandit, Oliver G. Pybus, Guillaume Fournié, Madhvi Joshi1, and Chaitanya Joshi1
Author affiliations: University of Oxford, Oxford, UK (J. Raghwani, L. du Plessis, O.G. Pybus); University of Edinburgh, Edinburgh, Scotland, UK (J.T. McCrone); Royal Veterinary College, Hatfield, UK (S.C. Hill, O.G. Pybus, G. Fournié); University of Bristol, Bristol, UK (K.V. Parag), Université Clermont-Auvergne, Saint-Genès-Champanelle, France (J. Thézé),; Gujarat Biotechnology Research Centre, Gandhinagar, India (D. Kumar, A. Puvar, R. Pandit, M. Joshi, C. Joshi)

Main Article

Figure 2

Size, duration, and importation of severe acute respiratory syndrome coronavirus 2 transmission lineages, Gujarat, India. A) Tree map summarizing the 113 detected transmission lineages by size. Colors indicate the duration of persistence of the lineage, and areas indicate the size of the transmission lineages. Lineage duration corresponds to time between the lineage’s oldest and most recently sampled genomes. B) Strong log‒linear relationship between size and mean tMRCA of each transmission lineages. Gray shading indicates time of testing; dashed line indicates slope. C) Breakdown of virus importations into Gujarat from other states in India or other countries. The number of location state transitions were estimated by using a robust counting approach (21) and a 3-location discrete trait phylogeographic analysis. tMRCA, time to most recent common ancestor.

Figure 2. Size, duration, and importation of severe acute respiratory syndrome coronavirus 2 transmission lineages, Gujarat, India. A) Tree map summarizing the 113 detected transmission lineages by size. Colors indicate the duration of persistence of the lineage, and areas indicate the size of the transmission lineages. Lineage duration corresponds to time between the lineage’s oldest and most recently sampled genomes. B) Strong log‒linear relationship between size and mean tMRCA of each transmission lineages. Gray shading indicates time of testing; dashed line indicates slope. C) Breakdown of virus importations into Gujarat from other states in India or other countries. The number of location state transitions were estimated by using a robust counting approach (21) and a 3-location discrete trait phylogeographic analysis. tMRCA, time to most recent common ancestor.

Main Article

References
  1. du Plessis  L, McCrone  JT, Zarebski  AE, Hill  V, Ruis  C, Gutierrez  B, et al.; COVID-19 Genomics UK (COG-UK) Consortium. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science. 2021;371:70812. DOIPubMedGoogle Scholar
  2. López  MG, Chiner-Oms  Á, García de Viedma  D, Ruiz-Rodriguez  P, Bracho  MA, Cancino-Muñoz  I, et al.; SeqCOVID-Spain consortium. The first wave of the COVID-19 epidemic in Spain was associated with early introductions and fast spread of a dominating genetic variant. Nat Genet. 2021;53:140514. DOIPubMedGoogle Scholar
  3. Murall  CL, Fournier  E, Galvez  JH, N’Guessan  A, Reiling  SJ, Quirion  P-O, et al. A small number of early introductions seeded widespread transmission of SARS-CoV-2 in Québec, Canada. Genome Med. 2021;13:169. DOIPubMedGoogle Scholar
  4. Lemieux  JE, Siddle  KJ, Shaw  BM, Loreth  C, Schaffner  SF, Gladden-Young  A, et al. Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science. 2021;371:eabe3261. DOIPubMedGoogle Scholar
  5. Komissarov  AB, Safina  KR, Garushyants  SK, Fadeev  AV, Sergeeva  MV, Ivanova  AA, et al. Genomic epidemiology of the early stages of the SARS-CoV-2 outbreak in Russia. Nat Commun. 2021;12:649. DOIPubMedGoogle Scholar
  6. Tegally  H, Wilkinson  E, Lessells  RJ, Giandhari  J, Pillay  S, Msomi  N, et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat Med. 2021;27:4406. DOIPubMedGoogle Scholar
  7. Kraemer  MUG, Hill  V, Ruis  C, Dellicour  S, Bajaj  S, McCrone  JT, et al.; COVID-19 Genomics UK (COG-UK) Consortium. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Science. 2021;373:88995. DOIPubMedGoogle Scholar
  8. Tegally  H, Wilkinson  E, Giovanetti  M, Iranzadeh  A, Fonseca  V, Giandhari  J, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592:43843. DOIPubMedGoogle Scholar
  9. Volz  E, Mishra  S, Chand  M, Barrett  JC, Johnson  R, Geidelberg  L, et al.; COVID-19 Genomics UK (COG-UK) consortium. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593:2669. DOIPubMedGoogle Scholar
  10. Pandya  RR, Raol  MR, Mehta  RA, Panchal  JB, Chavda  BK, Bhadarka  KP, et al. Provisional population statistics as per 33 districts of Gujarat. Gujarat. Government of India; 2016 [cited 2022 Feb 24]. http://14.139.60.153/bitstream/123456789/13104/1/Statistical%20outline%20Gujarat%20state%202016.pdf
  11. Airport Authority of India. Traffic news for the month of March, 2020. p. 3 ‒5 [cited 2022 Feb 1]. https://www.aai.aero/en/business-opportunities/aai-traffice-news
  12. Ghosh RK, Tank N, Dutta M, Saxena S, Suthar P. Management of the COVID-19 pandemic in Gujarat: understanding the governance initiatives, leadership processes and their impact. Indian Institute of Management, Ahmedabad. 2020 [cited 2022 Feb 4]. https://www.iima.ac.in/c/document_library/Gujarat%20Covid%20Response%20Report-2020.pdf
  13. Joshi  M, Puvar  A, Kumar  D, Ansari  A, Pandya  M, Raval  J, et al. Genomic variations in SARS-CoV-2 genomes from Gujarat: underlying role of variants in disease epidemiology. Front Genet. 2021;12:586569. DOIPubMedGoogle Scholar
  14. Schmieder  R, Edwards  R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:8634. DOIPubMedGoogle Scholar
  15. Parag  KV. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves. PLOS Comput Biol. 2021;17:e1009347. DOIPubMedGoogle Scholar
  16. Ferguson  NM, Laydon  D, Nedjati-Gilani  G, Imai  N, Ainslie  K, Baguelin  M, et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London. 2020 [cited 2022 Feb 1]. https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/
  17. Gill  MS, Lemey  P, Faria  NR, Rambaut  A, Shapiro  B, Suchard  MA. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol Biol Evol. 2013;30:71324. DOIPubMedGoogle Scholar
  18. Suchard  MA, Lemey  P, Baele  G, Ayres  DL, Drummond  AJ, Rambaut  A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. DOIPubMedGoogle Scholar
  19. Shapiro  B, Rambaut  A, Drummond  AJ. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol. 2006;23:79. DOIPubMedGoogle Scholar
  20. Lemey  P, Rambaut  A, Bedford  T, Faria  N, Bielejec  F, Baele  G, et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 2014;10:e1003932. DOIPubMedGoogle Scholar
  21. Lemey  P, Minin  VN, Bielejec  F, Kosakovsky Pond  SL, Suchard  MA. A counting renaissance: combining stochastic mapping and empirical Bayes to quickly detect amino acid sites under positive selection. Bioinformatics. 2012;28:324856. DOIPubMedGoogle Scholar
  22. Della Rossa  F, Salzano  D, Di Meglio  A, De Lellis  F, Coraggio  M, Calabrese  C, et al. A network model of Italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic. Nat Commun. 2020;11:5106. DOIPubMedGoogle Scholar
  23. Balcan  D, Colizza  V, Gonçalves  B, Hu  H, Ramasco  JJ, Vespignani  A. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Natl Acad Sci U S A. 2009;106:214849. DOIPubMedGoogle Scholar
  24. Rader  B, Scarpino  SV, Nande  A, Hill  AL, Adlam  B, Reiner  RC, et al. Crowding and the shape of COVID-19 epidemics. Nat Med. 2020;26:182934. DOIPubMedGoogle Scholar
  25. Viboud  C, Bjørnstad  ON, Smith  DL, Simonsen  L, Miller  MA, Grenfell  BT. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science. 2006;312:44751. DOIPubMedGoogle Scholar
  26. Dalziel  BD, Kissler  S, Gog  JR, Viboud  C, Bjørnstad  ON, Metcalf  CJE, et al. Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science. 2018;362:759. DOIPubMedGoogle Scholar
  27. Zachreson  C, Fair  KM, Cliff  OM, Harding  N, Piraveenan  M, Prokopenko  M. Urbanization affects peak timing, prevalence, and bimodality of influenza pandemics in Australia: Results of a census-calibrated model. Sci Adv. 2018;4:eaau5294. DOIPubMedGoogle Scholar
  28. Lu  J, du Plessis  L, Liu  Z, Hill  V, Kang  M, Lin  H, et al. Genomic Epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell. 2020;181:9971003.e9. DOIPubMedGoogle Scholar

Main Article

1These senior authors contributed equally to this article.

Page created: February 01, 2022
Page updated: March 19, 2022
Page reviewed: March 19, 2022
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external