Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Volume 31, Number 10—October 2025

Dispatch

Fatal Pneumocephalus Caused by Hypervirulent Klebsiella pneumoniae, Germany

Nico Gläser1, Nina Schwab1, Yvonne Pfeifer, Anika Wahl, Martin A. Fischer, Anja Osterloh, Thomas F.E. Barth, Armin Imhof, Jochen Breitruck, Andreas Essig, and Jürgen Benjamin HagemannComments to Author 
Author affiliation: Ulm University Hospital, Ulm, Germany (N. Gläser, N. Schwab, A. Osterloh, T.F.E. Barth, A. Imhof, J. Breitruck, A. Essig, J.B. Hagemann); Robert Koch Institute, Wernigerode, Germany (Y. Pfeifer, A. Wahl, M.A. Fischer).

Main Article

Figure 3

Comparative plasmid alignment of hypervirulent Klebsiella pneumoniae from the study of a fatal pneumocephalus case in Germany, completed by using BRIG (10). The innermost rings show guanine-cytosine content, and the outer ring shows the used reference virulence plasmid pK2044 (blue) from K. pneumoniae strain NTUH-K2044 from Taiwan (11). Concentric rings illustrate the virulence plasmids of the K. pneumoniae isolates from this case, 0354/24 (light green) and 0355/24 (dark green), and a patient isolate from the same hospital, 0074/24 (orange). Sequence similarity to the reference plasmid is indicated by the intensity and continuity of the colored rings. The gaps correspond to regions with no major sequence similarity. The locations of the typical virulence-associated genes (iucA, iroB, rmpA, rmpA2, peg344) (12) are visualized on the outermost ring.

Figure 3. Comparative plasmid alignment of hypervirulent Klebsiella pneumoniae from the study of a fatal pneumocephalus case in Germany, completed by using BRIG (10). The innermost rings show guanine-cytosine content, and the outer ring shows the used reference virulence plasmid pK2044 (blue) from K. pneumoniae strain NTUH-K2044 from Taiwan (11). Concentric rings illustrate the virulence plasmids of the K. pneumoniae isolates from this case, 0354/24 (light green) and 0355/24 (dark green), and a patient isolate from the same hospital, 0074/24 (orange). Sequence similarity to the reference plasmid is indicated by the intensity and continuity of the colored rings. The gaps correspond to regions with no major sequence similarity. The locations of the typical virulence-associated genes (iucA, iroB, rmpA, rmpA2, peg344) (12) are visualized on the outermost ring.

Main Article

References
  1. Das  M. Global update on hypervirulent Klebsiella pneumoniae. Lancet Infect Dis. 2024;24:e621. DOIPubMedGoogle Scholar
  2. Lee  EJ, Kim  RO, Lee  M, Joo  BE. Concurrent spontaneous pneumocephalus and subarachnoid hemorrhage due to Klebsiella pneumoniae meningitis. J Clin Neurol. 2022;18:2535. DOIPubMedGoogle Scholar
  3. Wahl  A, Fischer  MA, Klaper  K, Müller  A, Borgmann  S, Friesen  J, et al. Presence of hypervirulence-associated determinants in Klebsiella pneumoniae from hospitalised patients in Germany. Int J Med Microbiol. 2024;314:151601. DOIPubMedGoogle Scholar
  4. Sandfort  M, Hans  JB, Fischer  MA, Reichert  F, Cremanns  M, Eisfeld  J, et al. Increase in NDM-1 and NDM-1/OXA-48-producing Klebsiella pneumoniae in Germany associated with the war in Ukraine, 2022. Euro Surveill. 2022;27:2200926. DOIPubMedGoogle Scholar
  5. Robertson  J, Nash  JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom. 2018;4:e000206. DOIPubMedGoogle Scholar
  6. Letunic  I, Bork  P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W2936. DOIPubMedGoogle Scholar
  7. Robertson  J, Bessonov  K, Schonfeld  J, Nash  JHE. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb Genom. 2020;6:mgen000435. DOIGoogle Scholar
  8. Lam  MMC, Wick  RR, Watts  SC, Cerdeira  LT, Wyres  KL, Holt  KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12:4188. DOIPubMedGoogle Scholar
  9. Wyres  KL, Wick  RR, Gorrie  C, Jenney  A, Follador  R, Thomson  NR, et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom. 2016;2:e000102. DOIPubMedGoogle Scholar
  10. Alikhan  NF, Petty  NK, Ben Zakour  NL, Beatson  SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402. DOIPubMedGoogle Scholar
  11. Wu  KM, Li  LH, Yan  JJ, Tsao  N, Liao  TL, Tsai  HC, et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol. 2009;191:4492501. DOIPubMedGoogle Scholar
  12. Russo  TA, Lebreton  F, McGann  PT. A step forward in hypervirulent Klebsiella pneumoniae diagnostics. Emerg Infect Dis. 2025;31:13. DOIPubMedGoogle Scholar
  13. Marr  CM, Russo  TA. Hypervirulent Klebsiella pneumoniae: a new public health threat. Expert Rev Anti Infect Ther. 2019;17:713. DOIPubMedGoogle Scholar
  14. Chang  WN, Huang  CR, Lu  CH, Chien  CC. Adult Klebsiella pneumoniae meningitis in Taiwan: an overview. Acta Neurol Taiwan. 2012;21:8796.PubMedGoogle Scholar
  15. Neumann  B, Stürhof  C, Rath  A, Kieninger  B, Eger  E, Müller  JU, et al. Detection and characterization of putative hypervirulent Klebsiella pneumoniae isolates in microbiological diagnostics. Sci Rep. 2023;13:19025. DOIPubMedGoogle Scholar

Main Article

1These first authors contributed equally to this article.

Page created: August 18, 2025
Page updated: September 25, 2025
Page reviewed: September 25, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external