Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 6—June 2025

Research

Force of Infection Model for Estimating Time to Dengue Virus Seropositivity among Expatriate Populations, Thailand

Erica Rapheal, Amornphat Kitro, Hisham Imad, Marco Hamins-Peurtolas, Jutarmas Olanwijitwong, Lapakorn Chatapat, Taweewun Hunsawong, Kathryn Anderson1Comments to Author , and Watcharapong Piyaphanee1
Author affiliation: University of Minnesota School of Public Health, Minneapolis, Minnesota, USA (E. Rapheal); Chiang Mai University, Chiang Mai, Thailand (A. Kitro); Mahidol University, Bangkok, Thailand (H. Imad, J. Olanwijitwong, L. Chatapat, W. Piyaphanee); Osaka University, Osaka, Japan (H. Imad); University of California, San Francisco, California, USA (M. Hamins-Peurolas); US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok (T. Hunsawong); SUNY Upstate Medical University, Syracuse, New York, USA (K. Anderson)

Main Article

Figure

Crude force of infection by years in dengue-endemic area (DEA) in study of force of infection model for estimating time to DENV seropositivity among expatriate populations, Thailand. A serocatalytic model estimating dengue force of infection was fit using a binomial model with a cloglog link function with log(years in DEA) as an offset. Solid red line represents the crude model; solid green line represents the reduced model. The solid blue line represents approximate seroprevalence among locals of Thailand, as modeled by Hamins Puertolas et al. (25). Dotted line indicates 60% DENV seroprevalence. Black bars show the seroprevalence of DENV among all study participants in 5-year bins of years spent in a DEA. Uncertainty in measured seroprevalence was calculated using the Wilson confidence interval for proportions (30). DENV, dengue virus.

Figure. Crude force of infection by years in dengue-endemic area (DEA) in study of force of infection model for estimating time to DENV seropositivity among expatriate populations, Thailand. A serocatalytic model estimating dengue force of infection was fit using a binomial model with a cloglog link function with log(years in DEA) as an offset. Solid red line represents the crude model; solid green line represents the reduced model. The solid blue line represents approximate seroprevalence among locals of Thailand, as modeled by Hamins Puertolas et al. (25). Dotted line indicates 60% DENV seroprevalence. Black bars show the seroprevalence of DENV among all study participants in 5-year bins of years spent in a DEA. Uncertainty in measured seroprevalence was calculated using the Wilson confidence interval for proportions (30). DENV, dengue virus.

Main Article

References
  1. Cattarino  L, Rodriguez-Barraquer  I, Imai  N, Cummings  DAT, Ferguson  NM. Mapping global variation in dengue transmission intensity. Sci Transl Med. 2020;12:eaax4144. DOIPubMedGoogle Scholar
  2. World Health Organization. Dengue and severe dengue [2020 Apr 12]. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  3. Halstead  SB, Yamarat  C. Recent epidemics of hemorrhagic fever in Thailand: observations related to pathogenesis of a “new” dengue disease. Am J Public Health Nations Health. 1965;55:138695. DOIPubMedGoogle Scholar
  4. Sabin  AB. Research on dengue during World War II. Am J Trop Med Hyg. 1952;1:3050. DOIPubMedGoogle Scholar
  5. Centers for Disease Control and Prevention. Dengue shock syndrome (DSS) 2010 case definition [cited 2024 Jan 29]. https://ndc.services.cdc.gov/case-definitions/dengue-shock-syndrome-2010
  6. Halstead  SB, Rojanasuphot  S, Sangkawibha  N. Original antigenic sin in dengue. Am J Trop Med Hyg. 1983;32:1546. DOIPubMedGoogle Scholar
  7. Bhatt  S, Gething  PW, Brady  OJ, Messina  JP, Farlow  AW, Moyes  CL, et al. The global distribution and burden of dengue. Nature. 2013;496:5047. DOIPubMedGoogle Scholar
  8. Naish  S, Dale  P, Mackenzie  JS, McBride  J, Mengersen  K, Tong  S. Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis. 2014;14:167. DOIPubMedGoogle Scholar
  9. Rocklöv  J, Tozan  Y. Climate change and the rising infectiousness of dengue. Emerg Top Life Sci. 2019;3:13342. DOIPubMedGoogle Scholar
  10. Gubler  DJ. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop Med Health. 2011;39(Suppl):311. DOIPubMedGoogle Scholar
  11. Menon  S, Wilder-Smith  A. New vaccines on the immediate horizon for travelers: chikungunya and dengue vaccines. Curr Infect Dis Rep. 2023;25:21124. DOIGoogle Scholar
  12. Thomas  SJ. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines. 2023;8:55. DOIPubMedGoogle Scholar
  13. Kallás  EG, Cintra  MAT, Moreira  JA, Patiño  EG, Braga  PE, Tenório  JCV, et al. Live, attenuated, tetravalent butantan-dengue vaccine in children and adults. N Engl J Med. 2024;390:397408. DOIPubMedGoogle Scholar
  14. Nogueira  ML, Cintra  MAT, Moreira  JA, Patiño  EG, Braga  PE, Tenório  JCV, et al.; Phase 3 Butantan-DV Working Group. Efficacy and safety of Butantan-DV in participants aged 2-59 years through an extended follow-up: results from a double-blind, randomised, placebo-controlled, phase 3, multicentre trial in Brazil. Lancet Infect Dis. 2024;24:123444. DOIPubMedGoogle Scholar
  15. Angelin  M, Sjölin  J, Kahn  F, Ljunghill Hedberg  A, Rosdahl  A, Skorup  P, et al. Qdenga® - A promising dengue fever vaccine; can it be recommended to non-immune travelers? Travel Med Infect Dis. 2023;54:102598. DOIPubMedGoogle Scholar
  16. Freedman  DO. A new dengue vaccine (TAK-003) now WHO recommended in endemic areas; what about travellers? J Travel Med. 2023;30:taad132. DOIPubMedGoogle Scholar
  17. World Health Organization. WHO position paper on dengue vaccines–May 2024 [cited 2024 Sep 4]. https://iris.who.int/bitstream/handle/10665/376641/WER9918-eng-fre.pdf
  18. Duvignaud  A, Stoney  RJ, Angelo  KM, Chen  LH, Cattaneo  P, Motta  L, et al.; GeoSentinel Network. Epidemiology of travel-associated dengue from 2007 to 2022: A GeoSentinel analysis. J Travel Med. 2024;31:taae089. DOIPubMedGoogle Scholar
  19. Kitro  A, Ngamprasertchai  T, Srithanaviboonchai  K. Infectious diseases and predominant travel-related syndromes among long-term expatriates living in low-and middle- income countries: a scoping review. Trop Dis Travel Med Vaccines. 2022;8:11. DOIPubMedGoogle Scholar
  20. World Population Review. Bangkok population 2023 [cited 2023 Dec 26]. https://worldpopulationreview.com/world-cities/bangkok-population
  21. Shepherd  SM, Shoff  WH. Vaccination for the expatriate and long-term traveler. Expert Rev Vaccines. 2014;13:775800. DOIPubMedGoogle Scholar
  22. Reiter  P, Lathrop  S, Bunning  M, Biggerstaff  B, Singer  D, Tiwari  T, et al. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis. 2003;9:869. DOIPubMedGoogle Scholar
  23. Ribeiro Dos Santos  G, Buddhari  D, Iamsirithaworn  S, Khampaen  D, Ponlawat  A, Fansiri  T, et al. Individual, household, and community drivers of dengue virus infection risk in Kamphaeng Phet Province, Thailand. J Infect Dis. 2022;226:134856. DOIPubMedGoogle Scholar
  24. Anderson  KB, Buddhari  D, Srikiatkhachorn  A, Gromowski  GD, Iamsirithaworn  S, Weg  AL, et al. An innovative, prospective, hybrid cohort-cluster study design to characterize dengue virus transmission in multigenerational households in Kamphaeng Phet, Thailand. Am J Epidemiol. 2020;189:64859. DOIPubMedGoogle Scholar
  25. Hamins-Puértolas  M, Buddhari  D, Salje  H, Cummings  DAT, Fernandez  S, Farmer  A, et al. Household immunity and individual risk of infection with dengue virus in a prospective, longitudinal cohort study. Nat Microbiol. 2024;9:27483. DOIPubMedGoogle Scholar
  26. Rodríguez-Barraquer  I, Buathong  R, Iamsirithaworn  S, Nisalak  A, Lessler  J, Jarman  RG, et al. Revisiting Rayong: shifting seroprofiles of dengue in Thailand and their implications for transmission and control. Am J Epidemiol. 2014;179:35360. DOIPubMedGoogle Scholar
  27. Kitro  A, Imad  HA, Pisutsan  P, Matsee  W, Sirikul  W, Sapbamrer  R, et al. Seroprevalence of dengue, Japanese encephalitis and Zika among long-term expatriates in Thailand. J Travel Med. 2024;31:taae022. DOIPubMedGoogle Scholar
  28. Russell  PK, Nisalak  A. Dengue virus identification by the plaque reduction neutralization test. J Immunol. 1967;99:2916. DOIPubMedGoogle Scholar
  29. Rue  H, Martino  S, Chopin  N. Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations. J R Stat Soc Series B Stat Methodol. 2009;71:31992. DOIGoogle Scholar
  30. Wilson  EB. Probable inference, the law of succession, and statistical inference. J Am Stat Assoc. 1927;22:20912. DOIGoogle Scholar
  31. McElreath  R. Statistical rethinking: a Bayesian course with examples in R and Stan. New York: CRC Press Taylor & Francis; 2016.
  32. Nealon  J, Bouckenooghe  A, Cortes  M, Coudeville  L, Frago  C, Macina  D, et al. Dengue endemicity, force of infection, and variation in transmission intensity in 13 endemic countries. J Infect Dis. 2022;225:7583. DOIPubMedGoogle Scholar
  33. Hamins-Puértolas  M, Buddhari  D, Salje  H, Cummings  DAT, Fernandez  S, Farmer  A, et al. Household immunity and individual risk of infection with dengue virus in a prospective, longitudinal cohort study. Nat Microbiol. 2024;9:27483. DOIPubMedGoogle Scholar
  34. Patel  RV, Shaeer  KM, Patel  P, Garmaza  A, Wiangkham  K, Franks  RB, et al. EPA-registered repellents for mosquitoes transmitting emerging viral disease. Pharmacotherapy. 2016;36:127280. DOIPubMedGoogle Scholar
  35. Lupi  E, Hatz  C, Schlagenhauf  P. The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. - a literature review. Travel Med Infect Dis. 2013;11:374411. DOIPubMedGoogle Scholar
  36. Kitro  A, Sirikul  W, Piankusol  C, Rirermsoonthorn  P, Seesen  M, Wangsan  K, et al. Acceptance, attitude, and factors affecting the intention to accept COVID-19 vaccine among Thai people and expatriates living in Thailand. Vaccine. 2021;39:755461. DOIPubMedGoogle Scholar
  37. NSO. Population and Housing Census [cited 2025 Jan 15]. https://www.nso.go.th/nsoweb/main/summano/aE?year=957&type=3309#data__report
  38. Jaisuekun  K, Sunanta  S. German migrants in Pattaya, Thailand: gendered mobilities and the blurring boundaries between sex tourism, marriage migration, and lifestyle migration. In: Mora C, Piper N, editors. The Palgrave Handbook of Gender and Migration. Cham (Switzerland): Springer International Publishing; 2021. p. 137–149.
  39. Kerdpanich  P, Kongkiatngam  S, Buddhari  D, Simasathien  S, Klungthong  C, Rodpradit  P, et al. Comparative analyses of historical trends in confirmed dengue illnesses detected at public hospitals in Bangkok and northern Thailand, 2002–2018. Am J Trop Med Hyg. 2020;104:105866. DOIPubMedGoogle Scholar
  40. World Health Organization. Combating dengue outbreak and addressing overlapping challenges with COVID-19 [cited 2024 Jan 5]. https://www.who.int/thailand/news/detail/30-06-2023-combating-dengue-outbreak-and-addressing-overlapping-challenges-with-covid-19
  41. Ooi  EE, Kalimuddin  S. Insights into dengue immunity from vaccine trials. Sci Transl Med. 2023;15:eadh3067. DOIPubMedGoogle Scholar
  42. Lim  JK, Carabali  M, Edwards  T, Barro  A, Lee  JS, Dahourou  D, et al. Estimating the force of infection for dengue virus using repeated serosurveys, Ouagadougou, Burkina Faso. Emerg Infect Dis. 2021;27:1309. DOIPubMedGoogle Scholar
  43. Biggs  JR, Sy  AK, Sherratt  K, Brady  OJ, Kucharski  AJ, Funk  S, et al. Estimating the annual dengue force of infection from the age of reporting primary infections across urban centres in endemic countries. BMC Med. 2021;19:217. DOIPubMedGoogle Scholar

Main Article

1These last authors contributed equally to this article.

Page created: April 16, 2025
Page updated: May 20, 2025
Page reviewed: May 20, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external