Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 7—July 2025

Dispatch

Outbreak of Ceftriaxone-Resistant Salmonella enterica Serovar Typhi, Bangladesh, 2024

Yogesh Hooda, Arif Mohammad Tanmoy, Sudipta Deb Nath, Anannya Barman Jui, Al Amin, Hafizur Rahman, Neoyman Nasir Shorkar, Naito Kanon, Md Asadur Rahman, Denise O. Garrett, Mohammad Shahidul Islam, Nawshad Uddin Ahmed ASM, Samir K. Saha, and Senjuti SahaComments to Author 
Author affiliation: Child Health Research Foundation, Dhaka, Bangladesh (Y. Hooda, A.M. Tanmoy, S.D. Nath, A.B. Jui, A. Amin, H. Rahman, N.N. Shorkar, N. Kanon, M.S. Islam, A.N.U. Ahmed, S.K. Saha, S. Saha); Popular Diagnostic Centre Limited, Dhaka (M.A. Rahman); Sabin Vaccine Institute, Washington, DC, USA (D.O. Garrett); Bangladesh Shishu Hospital and Institute, Dhaka (S.K. Saha)

Main Article

Figure 3

Phylogenetic tree of Salmonella Typhi genotype 4.3.1, including the 17 CefR 4.3.1.2.B1 strains detected in findings from a study of an outbreak of CefR S. enterica serovar Typhi, Bangladesh, 2024. A) Phylogenetic tree of 546 genomes belonging to genotype 4.3.1 and its subtypes. CefR strains sequenced in our study belong to genotype 4.3.1 and are highlighted in yellow. Tree was built following a pipeline described earlier (10) and displays different CefR genes, countries of isolation, and associated plasmid elements. For context, 529 genomes from genotype 4.3.1 and its subtypes were also included. Of those, 249 (10%) were randomly selected from 2,567 genomes (genotype 4.3.1.2 and subtypes) available on Pathogenwatch by genotype, year, and country (accessions available for 2,542; accessed on 14 July 2024), and 280 were from previous studies conducted in Bangladesh, India, and Pakistan (14). B) Zoomed-in view of the subclade containing the CefR strains from our study in Bangladesh. Scale bars indicate XXX. CefR, ceftriaxone-resistant.

Figure 3. Phylogenetic tree of Salmonella Typhi genotype 4.3.1, including the 17 CefR 4.3.1.2.B1 strains detected in findings from a study of an outbreak of CefR S. enterica serovar Typhi, Bangladesh, 2024. A) Phylogenetic tree of 546 genomes belonging to genotype 4.3.1 and its subtypes. CefR strains sequenced in our study belong to genotype 4.3.1 and are highlighted in yellow. Tree was built following a pipeline described earlier (10) and displays different CefR genes, countries of isolation, and associated plasmid elements. For context, 529 genomes from genotype 4.3.1 and its subtypes were also included. Of those, 249 (10%) were randomly selected from 2,567 genomes (genotype 4.3.1.2 and subtypes) available on Pathogenwatch by genotype, year, and country (accessions available for 2,542; accessed on 14 July 2024), and 280 were from previous studies conducted in Bangladesh, India, and Pakistan (14). B) Zoomed-in view of the subclade containing the CefR strains from our study in Bangladesh. Scale bars indicate XXX. CefR, ceftriaxone-resistant.

Main Article

References
  1. Stanaway  JD, Reiner  RC, Blacker  BF, Goldberg  EM, Khalil  IA, Troeger  CE, et al.; GBD 2017 Typhoid and Paratyphoid Collaborators. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19:36981. DOIPubMedGoogle Scholar
  2. Hooda  Y, Tanmoy  AM, Sajib  MSI, Saha  S. Mass azithromycin administration: considerations in an increasingly resistant world. BMJ Glob Health. 2020;5:e002446. DOIPubMedGoogle Scholar
  3. Klemm  EJ, Shakoor  S, Page  AJ, Qamar  FN, Judge  K, Saeed  DK, et al. Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio. 2018;9:e0010518. DOIPubMedGoogle Scholar
  4. Djeghout  B, Saha  S, Sajib  MSI, Tanmoy  AM, Islam  M, Kay  GL, et al. Ceftriaxone-resistant Salmonella Typhi carries an IncI1-ST31 plasmid encoding CTX-M-15. J Med Microbiol. 2018;67:6207. DOIPubMedGoogle Scholar
  5. Argimón  S, Nagaraj  G, Shamanna  V, Sravani  D, Vasanth  AK, Prasanna  A, et al. Circulation of third-generation cephalosporin resistant Salmonella Typhi in Mumbai, India. Clin Infect Dis. 2022;74:22347. DOIPubMedGoogle Scholar
  6. Godbole  G, McCann  N, Jones  SM, Dallman  TJ, Brown  M. Ceftriaxone-resistant Salmonella Typhi in a traveller returning from a mass gathering in Iraq. Lancet Infect Dis. 2019;19:467. DOIPubMedGoogle Scholar
  7. Saha  S, Islam  M, Uddin  MJ, Saha  S, Das  RC, Baqui  AH, et al. Integration of enteric fever surveillance into the WHO-coordinated Invasive Bacterial-Vaccine Preventable Diseases (IB-VPD) platform: A low cost approach to track an increasingly important disease. PLoS Negl Trop Dis. 2017;11:e0005999. DOIPubMedGoogle Scholar
  8. Tanmoy  AM, Hooda  Y, Sajib  MSI, Rahman  H, Sarkar  A, Das  D, et al. Trends in antimicrobial resistance amongst Salmonella Typhi in Bangladesh: A 24-year retrospective observational study (1999-2022). PLoS Negl Trop Dis. 2024;18:e0012558. DOIPubMedGoogle Scholar
  9. Wick  RR, Judd  LM, Gorrie  CL, Holt  KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13:e1005595. DOIPubMedGoogle Scholar
  10. Tanmoy  AM, Hooda  Y, Sajib  MSI, da Silva  KE, Iqbal  J, Qamar  FN, et al. Paratype: a genotyping tool for Salmonella Paratyphi A reveals its global genomic diversity. Nat Commun. 2022;13:7912. DOIPubMedGoogle Scholar
  11. Antipov  D, Hartwick  N, Shen  M, Raiko  M, Lapidus  A, Pevzner  PA. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics. 2016;32:33807. DOIPubMedGoogle Scholar
  12. Wishart  DS, Han  S, Saha  S, Oler  E, Peters  H, Grant  JR, et al. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023;51(W1):W44350. DOIPubMedGoogle Scholar
  13. Carey  ME, Dyson  ZA, Ingle  DJ, Amir  A, Aworh  MK, Chattaway  MA, et al.; Global Typhoid Genomics Consortium Group Authorship. Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes. eLife. 2023;12:e85867. DOIPubMedGoogle Scholar
  14. Argimón  S, David  S, Underwood  A, Abrudan  M, Wheeler  NE, Kekre  M, et al.; NIHR Global Health Research Unit on Genomic Surveillance of Antimicrobial Resistance. Rapid genomic characterization and global surveillance of Klebsiella using Pathogenwatch. Clin Infect Dis. 2021;73(Suppl_4):S32535. DOIPubMedGoogle Scholar

Main Article

Page created: June 02, 2025
Page updated: June 20, 2025
Page reviewed: June 20, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external