Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 32, Number 2—February 2026

Research

Leptotrombidium imphalum Chiggers as Vector for Scrub Typhus in Human Settlements, India, 2022–2023

Carol S. Devamani, Neal Alexander, Rawadee Kumlert, Benjamin L. Makepeace, Serge Morand, Mary Cameron, Alexandr A. Stekolnikov, Winsley Rose, Daniel Chandramohan, Punam Mangtani, Kundavaram P.P. Abhilash, and Wolf-Peter SchmidtComments to Author 
Author affiliation: Christian Medical College, Vellore, India (C.S. Devamani, W. Rose, K.P.P. Abhilash); London School of Hygiene and Tropical Medicine, London, UK (N. Alexander, M. Cameron, D. Chandramohan, P. Mangtani, W.-P. Schmidt); Ministry of Public Health, Nonthaburi, Thailand (R. Kumlert); University of Liverpool, Liverpool, UK (B.L. Makepeace); Centre National de la Recherche Scientifique, France–Kasetsart University and Mahidol University, Bangkok, Thailand (S. Morand); Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia (A.A. Stekolnikov)

Main Article

Figure 1

Correlation of trapping success with seasonal characteristics in study of Leptotrombidium imphalum chiggers as vector for scrub typhus in human settlements, India, 2022–2023. A) Monthly small mammal catches per trap night, by habitat (center of village, edge of village, or field outside village), compared with numbers of monthly human scrub typhus cases. Case numbers adapted from Devamani et al. (13). B) Monthly rainfall (blue bars) and average daily temperature (orange line) 1991–2021. Source: India Meteorological Department (https://mausam.imd.gov.in). Scales for the y-axes differ substantially to underscore patterns but do not permit direct comparisons.

Figure 1. Correlation of trapping success with seasonal characteristics in study of Leptotrombidium imphalum chiggers as vector for scrub typhus in human settlements, India, 2022–2023. A) Monthly small mammal catches per trap night, by habitat (center of village, edge of village, or field outside village), compared with numbers of monthly human scrub typhus cases. Case numbers adapted from Devamani et al. (13). B) Monthly rainfall (blue bars) and average daily temperature (orange line) 1991–2021. Source: India Meteorological Department (https://mausam.imd.gov.in). Scales for the y-axes differ substantially to underscore patterns but do not permit direct comparisons.

Main Article

References
  1. Tamura  A, Ohashi  N, Urakami  H, Miyamura  S. Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int J Syst Bacteriol. 1995;45:58991. DOIPubMedGoogle Scholar
  2. Kelly  DJ, Fuerst  PA, Ching  WM, Richards  AL. Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clin Infect Dis. 2009;48(Suppl 3):S20330. DOIPubMedGoogle Scholar
  3. Abhilash  KP, Jeevan  JA, Mitra  S, Paul  N, Murugan  TP, Rangaraj  A, et al. Acute undifferentiated febrile illness in patients presenting to a tertiary care hospital in South India: clinical spectrum and outcome. J Glob Infect Dis. 2016;8:14754. DOIGoogle Scholar
  4. Elliott  I, Pearson  I, Dahal  P, Thomas  NV, Roberts  T, Newton  PN. Scrub typhus ecology: a systematic review of Orientia in vectors and hosts. Parasit Vectors. 2019;12:513. DOIGoogle Scholar
  5. Behera  B, Biswal  M, Das  RR, Dey  A, Jena  J, Dhal  S, et al. Clinico-epidemiological analysis of scrub typhus in hospitalised patients presenting with acute undifferentiated febrile illness: a hospital-based study from eastern India. Indian J Med Microbiol. 2019;37:27880. DOIGoogle Scholar
  6. Bonell  A, Lubell  Y, Newton  PN, Crump  JA, Paris  DH. Estimating the burden of scrub typhus: a systematic review. PLoS Negl Trop Dis. 2017;11:e0005838. DOIGoogle Scholar
  7. Devamani  CS, Prakash  JAJ, Alexander  N, Suzuki  M, Schmidt  WP. Hospitalisations and outpatient visits for undifferentiated fever attributable to scrub typhus in rural South India: retrospective cohort and nested case-control study. PLoS Negl Trop Dis. 2019;13:e0007160. DOIGoogle Scholar
  8. Roopa  KS, Karthika  K, Sugumar  M, Bammigatti  C, Shamanna  SB, Harish  BN. Serodiagnosis of scrub typhus at a tertiary care hospital from southern India. J Clin Diagn Res. 2015;9:DC0507. DOIGoogle Scholar
  9. Devasagayam  E, Dayanand  D, Kundu  D, Kamath  MS, Kirubakaran  R, Varghese  GM. The burden of scrub typhus in India: a systematic review. PLoS Negl Trop Dis. 2021;15:e0009619. DOIGoogle Scholar
  10. Trowbridge  PPD, Premkumar  PS, Varghese  GM. Prevalence and risk factors for scrub typhus in South India. Trop Med Int Health. 2017;22:57682. DOIGoogle Scholar
  11. Devamani  CS, Schmidt  WP, Ariyoshi  K, Anitha  A, Kalaimani  S, Prakash  JAJ. Risk factors for scrub typhus, murine typhus, and spotted fever seropositivity in urban areas, rural plains, and peri-forest hill villages in South India: a cross-sectional study. Am J Trop Med Hyg. 2020;103:23848. DOIGoogle Scholar
  12. Schmidt  WP, Alexander  N, Rose  W, Chandramohan  D, Cameron  M, Abhilash  K, et al. Risk factors for scrub typhus infection in South India: population-based cohort study. Epidemiol Infect. 2025;153:e102. DOIGoogle Scholar
  13. Devamani  C, Alexander  N, Chandramohan  D, Stenos  J, Cameron  M, Abhilash  KPP, et al. Incidence of scrub typhus in rural South India. N Engl J Med. 2025;392:108999. DOIGoogle Scholar
  14. Agrawal  VC. Taxonomic studies on Indian Muridae and Hystricidae. Kolkata: Zoological Survey of India; 2000.
  15. CERoPath. Community ecology of rodents and their pathogens in southeast Asia. 2024 [cited 2025 Jul 15]. http://www.ceropath.org
  16. Fernandes  S, Kulkarni  SM. Studies on the Trombiculid mite fauna of India. Kolkata: Zoological Survey of India; 2003.
  17. Stekolnikov  AA. Leptotrombidium (Acari: Trombiculidae) of the world. Zootaxa. 2013;3728:1173. DOIGoogle Scholar
  18. Vercammen-Grandjean  PH, Langston  R. The chigger mites of the world. Volume III. Leptotrombidium complex. San Francisco: George Williams Hooper Foundation, UCSF Reprographics Department; 1976.
  19. Jiang  J, Chan  TC, Temenak  JJ, Dasch  GA, Ching  WM, Richards  AL. Development of a quantitative real-time polymerase chain reaction assay specific for Orientia tsutsugamushi. Am J Trop Med Hyg. 2004;70:3516. DOIGoogle Scholar
  20. Katholi  CR, Toé  L, Merriweather  A, Unnasch  TR. Determining the prevalence of Onchocerca volvulus infection in vector populations by polymerase chain reaction screening of pools of black flies. J Infect Dis. 1995;172:14147. DOIGoogle Scholar
  21. Patterson  JE, Ruckstuhl  KE. Parasite infection and host group size: a meta-analytical review. Parasitology. 2013;140:80313. DOIGoogle Scholar
  22. Liu  QY, Fan  R, Song  WY, Peng  PY, Zhao  YF, Jin  DC, et al. The distribution and host-association of the vector chigger species Leptotrombidium imphalum in southwest China. Insects. 2024;15:504. DOIGoogle Scholar
  23. Tanskul  P, Linthicum  KJ. Redescription of Leptotrombidium (Leptotrombidium) imphalum (Acari: Trombiculidae), with observations on bionomics and medical importance in northern Thailand. J Med Entomol. 1999;36:8891. DOIGoogle Scholar
  24. Traub  R, Wisseman  CL Jr, Jones  MR, O’Keefe  JJ. The acquisition of Rickettsia tsutsugamushi by chiggers (trombiculid mites) during the feeding process. Ann N Y Acad Sci. 1975;266:91114. DOIGoogle Scholar
  25. Frances  SP, Watcharapichat  P, Phulsuksombati  D, Tanskul  P. Transmission of Orientia tsutsugamushi, the aetiological agent for scrub typhus, to co-feeding mites. Parasitology. 2000;120:6017. DOIGoogle Scholar
  26. Takhampunya  R, Korkusol  A, Promsathaporn  S, Tippayachai  B, Leepitakrat  S, Richards  AL, et al. Heterogeneity of Orientia tsutsugamushi genotypes in field-collected trombiculid mites from wild-caught small mammals in Thailand. PLoS Negl Trop Dis. 2018;12:e0006632. DOIGoogle Scholar
  27. Frances  SP, Watcharapichat  P, Phulsuksombati  D. Vertical transmission of Orientia tsutsugamushi in two lines of naturally infected Leptotrombidium deliense (Acari: Trombiculidae). J Med Entomol. 2001;38:1721. DOIGoogle Scholar
  28. Liu  RJ, Guo  XG, Zhao  CF, Zhao  YF, Peng  PY, Jin  DC. An ecological survey of chiggers (Acariformes: Trombiculidae) associated with small mammals in an epidemic focus of scrub typhus on the China–Myanmar border in southwest China. Insects. 2024;15:812. DOIGoogle Scholar
  29. Chaisiri  K, Gill  AC, Stekolnikov  AA, Hinjoy  S, McGarry  JW, Darby  AC, et al. Ecological and microbiological diversity of chigger mites, including vectors of scrub typhus, on small mammals across stratified habitats in Thailand. Anim Microbiome. 2019;1:18. DOIGoogle Scholar
  30. Wulandhari  SA, Paladsing  Y, Saesim  W, Charoennitiwat  V, Sonthayanon  P, Kumlert  R, et al. High prevalence and low diversity of chigger infestation in small mammals found in Bangkok metropolitan parks. Med Vet Entomol. 2021;35:53446. DOIGoogle Scholar
  31. Govindarajan  R, Sankar  SG, Kumar  MS, Rajamannar  V, Krishnamoorthi  R, Anand  AAP, et al. Molecular detection of Orientia tsutsugamushi in ectoparasites & their small mammal hosts captured from scrub typhus endemic areas in Madurai district, India. Indian J Med Res. 2024;159:18092. DOIGoogle Scholar
  32. Paulraj  PS, Renu  G, Ranganathan  K, Veeramanoharan  R, Kumar  A. Ectoparasites diversity on rodents and shrews at scrub typhus endemic Vellore district of Tamil Nadu, India. J Arthropod Borne Dis. 2022;16:5160. DOIGoogle Scholar
  33. Prakash  JAJ, Kamarasu  K, Samuel  PP, Govindarajan  R, Govindasamy  P, Johnson  LA, et al. Detection of Orientia tsutsugamushi in novel trombiculid mite species in northern Tamil Nadu, India: use of targeting the multicopy traD gene. J Med Entomol. 2022;59:6939. DOIGoogle Scholar
  34. Rajasegaran  P, Tan  KK, Khoo  JJ, Mansor  MS, Ahmad Khusaini  MKS, AbuBakar  S, et al. Molecular species delimitation analysis of Leptotrombidium spp. and other chigger species parasitizing birds in Malaysia. J Med Entomol. 2025;62:117591. DOIGoogle Scholar
  35. Rose  W, Kang  G, Verghese  VP, Candassamy  S, Samuel  P, Prakash  JJA, et al. Risk factors for acquisition of scrub typhus in children admitted to a tertiary centre and its surrounding districts in South India: a case–control study. BMC Infect Dis. 2019;19:665. DOIGoogle Scholar
  36. Sadanandane  C, Elango  A, Panneer  D, Mary  KA, Kumar  NP, Paily  KP, et al. Seasonal abundance of Leptotrombidium deliense, the vector of scrub typhus, in areas reporting acute encephalitis syndrome in Gorakhpur district, Uttar Pradesh, India. Exp Appl Acarol. 2021;84:795808. DOIGoogle Scholar
  37. Candasamy  S, Ayyanar  E, Paily  K, Karthikeyan  PA, Sundararajan  A, Purushothaman  J. Abundance & distribution of trombiculid mites & Orientia tsutsugamushi, the vectors & pathogen of scrub typhus in rodents & shrews collected from Puducherry & Tamil Nadu, India. Indian J Med Res. 2016;144:893900. DOIGoogle Scholar
  38. Elliott  I, Thangnimitchok  N, Chaisiri  K, Wangrangsimakul  T, Jaiboon  P, Day  NPJ, et al. Orientia tsutsugamushi dynamics in vectors and hosts: ecology and risk factors for foci of scrub typhus transmission in northern Thailand. Parasit Vectors. 2021;14:540. DOIGoogle Scholar
  39. Traub  R, Wisseman  CL Jr. Ecological considerations in scrub typhus. 2. Vector species. Bull World Health Organ. 1968;39:21930.
  40. Nakamoto  A, Nakanishi  N. Home range, habitat selection, and activity of male Asian house shrews, Suncus murinus, on Okinawa-Jima Island. Mammal Study. 2013;38:14753. DOIGoogle Scholar
  41. Jones  BM. A method for studying the distribution and bionomics of trombiculid mites (Acarina: Trombidiidae). Parasitology. 1950;40:113. DOIGoogle Scholar
  42. Munawar  N, Mahmood  T, Akrim  F, Fatima  H, Farooq  M, Irshad  N, et al. Small rodent communities and their associated damage to wheat-groundnut agriculture systems. Braz J Biol. 2024;84:e254445. DOIGoogle Scholar
  43. Kumlert  R, Chaisiri  K, Anantatat  T, Stekolnikov  AA, Morand  S, Prasartvit  A, et al. Autofluorescence microscopy for paired-matched morphological and molecular identification of individual chigger mites (Acari: Trombiculidae), the vectors of scrub typhus. PLoS One. 2018;13:e0193163. DOIGoogle Scholar

Main Article

Page created: January 20, 2026
Page updated: February 19, 2026
Page reviewed: February 19, 2026
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external