Volume 4, Number 1—March 1998
Synopsis
Proteases of Malaria Parasites: New Targets for Chemotherapy
Table 3
Effective inhibitorsa |
||||
---|---|---|---|---|
Protease | Biologic role | Compound (Reference) | In vitrob (IC50; μM) | In vivoc (mg/kg/day) |
Pf68 | Erythrocyte invasion | GlcA-Val-Leu-Gly-Lys-NHC2H5 (40) | 900 | |
Plasmepsin I | Hemoglobin degradation | SC-50083 (41) Ro 40-4388 (42) | 2-5 0.25 | |
Plasmepsin II | Hemoglobin degradation | Compound 7 (43) | 20 | |
Falcipain | Hemoglobin degradation | Z-Phe-Arg-CH2F (44) | 0.064 | |
Mu-Phe-HPh-CH2F (45) | ~0.03 | 400 | ||
Mu-Leu-HPh-VSPh (46) | 0.01 | |||
Oxalic bis ((2-hydroxy-1-naph- thylmethylene)hydrazide) (47) | 7 | |||
1-(2,5-dichlorophenyl)-3- (4-quinolinyl)-2-propen-1-one (48) | 0.23 | |||
7-chloro-1,2-dihydro-2-(2,3-di- methoxy-phenyl)-5,5-dioxide- 4-(1H,10H)-phenothiazinone (49) | 2 |
aThe structures of these compounds and details of the described studies are in the references noted.
bAssays compared the development of new ring-form parasites or the uptake of [3H]hypoxanthine by treated and control parasites.
cCure of Plasmodium vinckei-infected mice.
References
- Walsh JA. Disease problems in the Third World. Ann N Y Acad Sci. 1989;569:1–16. DOIPubMedGoogle Scholar
- Oaks SC, Mitchell VS, Pearson GW, Carpenter CCJ, eds. Malaria: obstacles and opportunities. Washington: National Academy Press; 1991.
- Olliaro P, Cattani J, Wirth D. Malaria, the submerged disease. JAMA. 1996;275:230–3. DOIPubMedGoogle Scholar
- Hoffman SL, Miller LH. Perspectives on malaria vaccine development. In: Hoffman SL, editor. Malaria vaccine development. Washington: ASM Press; 1996. p. 1-13.
- Alonso PL, Lindsay SW, Armstrong JRM, Conteh M, Hill AG, David PH, The effect of insecticide-treated bed nets on mortality of Gambian children. Lancet. 1991;337:1499–502. DOIPubMedGoogle Scholar
- Collins FH, Besansky NJ. Vector biology and the control of malaria in Africa. Science. 1994;264:1874–5. DOIPubMedGoogle Scholar
- Centers for Disease Control. Recommendations for the prevention of malaria among travelers. JAMA. 1990;263:2729–40. DOIPubMedGoogle Scholar
- Murphy GS, Basri H, Purnomo , Andersen EM, Bangs MJ, Mount DL, . Vivax malaria resistant to treatment and prophylaxis with chloroquine. Lancet. 1993;341:96–100. DOIPubMedGoogle Scholar
- Wyler DJ. Malaria chemoprophylaxis for the traveler. N Engl J Med. 1993;329:31–7. DOIPubMedGoogle Scholar
- Olliaro P, Nevill C, LeBras J, Ringwald P, Mussano P, Garner P, Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet. 1996;348:1196–201. DOIPubMedGoogle Scholar
- Palmer KJ, Holliday SM, Brogden RN. Mefloquine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1993;45:430–75. DOIPubMedGoogle Scholar
- Luzzi GA, Peto TEA. Adverse effects of antimalarials: an update. Drug Saf. 1993;8:295–311. DOIPubMedGoogle Scholar
- Hellgren U, Kihamia CM, Bergqvist Y, Lebbad M, Premji Z, Rombo L. Standard and reduced doses of sulfadoxine-pyrimethamine for treatment of Plasmodium falciparum in Tanzania, with determination of drug concentrations and susceptibility in vitro. Trans R Soc Trop Med Hyg. 1990;84:469–73. DOIPubMedGoogle Scholar
- Bradley DJ, Warhurst DC. Malaria prophylaxis: guidelines for travellers from Britain. BMJ. 1995;310:709–14.PubMedGoogle Scholar
- Bryson HM, Goa KL. Halofantrine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic potential. Drugs. 1992;43:236–58. DOIPubMedGoogle Scholar
- Meshnick SR, Taylor TE, Kamchonwongpaisan S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev. 1996;60:301–15.PubMedGoogle Scholar
- de Vries PJ, Dien TK. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs. 1996;52:818–36. DOIPubMedGoogle Scholar
- Radloff PD, Philipps J, Nkeyi M, Hutchinson D, Kremsner PG. Atovaquone and proguanil for Plasmodium falciparum malaria. Lancet. 1996;347:1511–4. DOIPubMedGoogle Scholar
- Ringwald P, Bickii J, Basco L. Randomised trial of pyronaridine versus chloroquine for acute uncomplicated falciparum malaria in Africa. Lancet. 1996;347:24–8. DOIPubMedGoogle Scholar
- Gordeuk VR, Thuma PE, Brittenham GM, Biemba G, Zulu S, Simwanza G, Iron chelation as a chemotherapeutic strategy for falciparum malaria. Am J Trop Med Hyg. 1993;48:193–7.PubMedGoogle Scholar
- Gordeuk V, Thuma P, Brittenham G, McLaren C, Parry D, Backenstose A, Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. N Engl J Med. 1992;327:1473–7.PubMedGoogle Scholar
- Anderson SL, Berman J, Kuschner R, Wesche D, Magill A, Wellde B, Prophylaxis of Plasmodium falciparum malaria with azithromycin administered to volunteers. Ann Intern Med. 1995;123:771–3.PubMedGoogle Scholar
- McKerrow JH, Sun E, Rosenthal PJ, Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol. 1993;47:821–53. DOIPubMedGoogle Scholar
- Blackman MJ, Holder AA. Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease: shedding of MSP133 as a noncovalently associated complex with other fragments of the MSP1. Mol Biochem Parasitol. 1992;50:307–16. DOIPubMedGoogle Scholar
- Perkins ME. Erythrocyte invasion by the malarial merozoite: recent advances. Exp Parasitol. 1989;69:94–9. DOIPubMedGoogle Scholar
- Bernard F, Schrevel J. Purification of a Plasmodium berghei neutral endopeptidase and its localization in merozoite. Mol Biochem Parasitol. 1987;26:167–74. DOIPubMedGoogle Scholar
- Rosenthal PJ, Kim K, McKerrow JH, Leech JH. Identification of three stage-specific proteinases of Plasmodium falciparum. J Exp Med. 1987;166:816–21. DOIPubMedGoogle Scholar
- Braun-Breton C, Rosenberry TL, Pereira da Silva L. Induction of the proteolytic activity of a membrane protein in Plasmodium falciparum by phosphatidyl inositol-specific phospholipase C. Nature. 1988;332:457–9. DOIPubMedGoogle Scholar
- Roggwiller E, Bétoulle MEM, Blisnick T, Braun Breton C. A role for erythrocyte band 3 degradation by the parasite gp76 serine protease in the formation of the parasitophorous vacuole during invasion of erythrocytes by Plasmodium falciparum. Mol Biochem Parasitol. 1996;82:13–24. DOIPubMedGoogle Scholar
- Deguercy A, Hommel M, Schrevel J. Purification and characterization of 37-kilodalton proteases from Plasmodium falciparum and Plasmodium berghei which cleave erythrocyte cytoskeletal components. Mol Biochem Parasitol. 1990;38:233–44. DOIPubMedGoogle Scholar
- Knapp B, Hundt E, Nau U, Küpper HA. Molecular cloning, genomic structure and localization in a blood stage antigen of Plasmodium falciparum characterized by a serine stretch. Mol Biochem Parasitol. 1989;32:73–84. DOIPubMedGoogle Scholar
- Li W-B, Bzik DJ, Horii T, Inselburg J. Structure and expression of the Plasmodium falciparum SERA gene. Mol Biochem Parasitol. 1989;33:13–26. DOIPubMedGoogle Scholar
- Knapp B, Nau U, Hundt E, Küpper HA. A new blood stage antigen of Plasmodium falciparum highly homologous to the serine-stretch protein SERP. Mol Biochem Parasitol. 1991;44:1–14. DOIPubMedGoogle Scholar
- Roggwiller E, Fricaud A-C, Blisnick T, Braun-Breton C. Host urokinase-type plasminogen activator participates in the release of malaria merozoites from infected erythrocytes. Mol Biochem Parasitol. 1997;86:49–59. DOIPubMedGoogle Scholar
- Schrevel J, Grellier P, Mayer R, Monsigny M. Neutral proteases involved in the reinvasion of erythrocytes by Plasmodium merozoites. Biol Cell. 1988;64:233–44. DOIPubMedGoogle Scholar
- Mayer R, Picard I, Lawton P, Grellier P, Barrault C, Monsigny M, Peptide derivatives specific for a Plasmodium falciparum proteinase inhibit the human erythrocyte invasion by merozoites. J Med Chem. 1991;34:3029–35. DOIPubMedGoogle Scholar
- Francis SE, Gluzman IY, Oksman A, Knickerbocker A, Mueller R, Bryant ML, Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. 1994;13:306–17.PubMedGoogle Scholar
- Moon RP, Tyas L, Certa U, Rupp K, Bur D, Jacquet C, Expression and characterisation of plasmepsin I from Plasmodium falciparum. Eur J Biochem. 1997;244:552–60. DOIPubMedGoogle Scholar
- Silva AM, Lee AY, Gulnik SV, Majer P, Collins J, Bhat TN, Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc Natl Acad Sci U S A. 1996;93:10034–9. DOIPubMedGoogle Scholar
- Rosenthal PJ, Wollish WS, Palmer JT, Rasnick D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest. 1991;88:1467–72. DOIPubMedGoogle Scholar
- Rosenthal PJ, Lee GK, Smith RE. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest. 1993;91:1052–6. DOIPubMedGoogle Scholar
- Rosenthal PJ, Olson JE, Lee GK, Palmer JT, Klaus JL, Rasnick D. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. Antimicrob Agents Chemother. 1996;40:1600–3.PubMedGoogle Scholar
- Ring CS, Sun E, McKerrow JH, Lee GK, Rosenthal PJ, Kuntz ID, Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci U S A. 1993;90:3583–7. DOIPubMedGoogle Scholar
- Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, In vitro antimalarial activity of chalcones and their derivatives. J Med Chem. 1995;38:5031–7. DOIPubMedGoogle Scholar
- Domínguez JN, López S, Charris J, Iarruso L, Lobo G, Semenov A, Synthesis and antimalarial effects of phenothiazine inhibitors of a Plasmodium falciparum cysteine protease. J Med Chem. 1997;40:2726–32. DOIPubMedGoogle Scholar
- Rosenthal PJ, Meshnick SR. Hemoglobin catabolism and iron utilization by malaria parasites. Mol Biochem Parasitol. 1996;83:131–9. DOIPubMedGoogle Scholar
- Bond JS, Butler PE. Intracellular proteases. Annu Rev Biochem. 1987;56:333–64. DOIPubMedGoogle Scholar
- Gluzman IY, Francis SE, Oksman A, Smith CE, Duffin KL, Goldberg DE. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J Clin Invest. 1994;93:1602–8. DOIPubMedGoogle Scholar
- Gyang FN, Poole B, Trager W. Peptidases from Plasmodium falciparum cultured in vitro. Mol Biochem Parasitol. 1982;5:263–73. DOIPubMedGoogle Scholar
- Aissi E, Charet P, Bouquelet S, Biguet J. Endoprotease in Plasmodium yoelii nigeriensis. Comp Biochem Physiol. 1983;74B:559–66.
- Sherman IW, Tanigoshi L. Purification of Plasmodium lophurae cathepsin D and its effects on erythrocyte membrane proteins. Mol Biochem Parasitol. 1983;8:207–26. DOIPubMedGoogle Scholar
- Sato K, Fukabori Y, Suzuki M. Plasmodium berghei: a study of globinolytic enzyme in erythrocytic parasite. Zbl Bakt Hyg A. 1987;264:487–95.
- Bailly E, Savel J, Mahouy G, Jaureguiberry G. Plasmodium falciparum: isolation and characterization of a 55-kDa protease with a cathepsin D-like activity from P. falciparum. Exp Parasitol. 1991;72:278–84. DOIPubMedGoogle Scholar
- Goldberg DE, Slater AFG, Beavis R, Chait B, Cerami A, Henderson GB. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. J Exp Med. 1991;173:961–9. DOIPubMedGoogle Scholar
- Vander Jagt DL, Hunsaker LA, Campos NM, Scaletti JV. Localization and characterization of hemoglobin-degrading aspartic proteinases from the malarial parasite Plasmodium falciparum. Biochim Biophys Acta. 1992;1122:256–64.PubMedGoogle Scholar
- Dame JB, Reddy GR, Yowell CA, Dunn BM, Kay J, Berry C. Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 1994;64:177–90. DOIPubMedGoogle Scholar
- Hill J, Tyas L, Phylip LH, Kay J, Dunn BM, Berry C. High level expression and characterisation of plasmepsin II, an aspartic proteinase from Plasmodium falciparum. FEBS Lett. 1994;352:155–8. DOIPubMedGoogle Scholar
- Dluzewski AR, Rangachari K, Wilson RJM, Gratzer WB. Plasmodium falciparum: protease inhibitors and inhibition of erythrocyte invasion. Exp Parasitol. 1986;62:416–22. DOIPubMedGoogle Scholar
- Rosenthal PJ, McKerrow JH, Aikawa M, Nagasawa H, Leech JH. A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest. 1988;82:1560–6. DOIPubMedGoogle Scholar
- Vander Jagt DL, Caughey WS, Campos NM, Hunsaker LA, Zanner MA. Parasite proteases and antimalarial activities of protease inhibitors. Prog Clin Biol Res. 1989;313:105–18.PubMedGoogle Scholar
- Rosenthal PJ. Plasmodium falciparum: effects of proteinase inhibitors on globin hydrolysis by cultured malaria parasites. Exp Parasitol. 1995;80:272–81. DOIPubMedGoogle Scholar
- Bailly E, Jambou R, Savel J, Jaureguiberry G. Plasmodium falciparum: differential sensitivity in vitro to E-64 (cysteine protease inhibitor) and pepstatin A (aspartyl protease inhibitor). J Protozool. 1992;39:593–9.PubMedGoogle Scholar
- Gamboa de Domínguez ND, Rosenthal PJ. Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood. 1996;87:4448–54.PubMedGoogle Scholar
- Asawamahasakda W, Ittarat I, Chang C-C, McElroy P, Meshnick SR. Effects of antimalarials and protease inhibitors on plasmodial hemozoin production. Mol Biochem Parasitol. 1994;67:183–91. DOIPubMedGoogle Scholar
- Rosenthal PJ, McKerrow JH, Rasnick D, Leech JH. Plasmodium falciparum: inhibitors of lysosomal cysteine proteinases inhibit a trophozoite proteinase and block parasite development. Mol Biochem Parasitol. 1989;35:177–84. DOIPubMedGoogle Scholar
- Salas F, Fichmann J, Lee GK, Scott MD, Rosenthal PJ. Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase. Infect Immun. 1995;63:2120–5.PubMedGoogle Scholar
- Francis SE, Gluzman IY, Oksman A, Banerjee D, Goldberg DE. Characterization of native falcipain, an enzyme involved in Plasmodium falciparum hemoglobin degradation. Mol Biochem Parasitol. 1996;83:189–200. DOIPubMedGoogle Scholar
- Rosenthal PJ, Nelson RG. Isolation and characterization of a cysteine proteinase gene of Plasmodium falciparum. Mol Biochem Parasitol. 1992;51:143–52. DOIPubMedGoogle Scholar
- Kamchonwongpaisan S, Samoff E, Meshnick SR. Identification of hemoglobin degradation products in Plasmodium falciparum. Mol Biochem Parasitol. 1997;86:179–86. DOIPubMedGoogle Scholar
- Vander Jagt DL, Baack BR, Hunsaker LA. Purification and characterization of an aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol. 1984;10:45–54. DOIPubMedGoogle Scholar
- Curley GP, O'Donovan SM, McNally J, Mullally M, O'Hara H, Troy A, Aminopeptidases from Plasmodium falciparum, Plasmodium chabaudi, and Plasmodium berghei. J Eukaryot Microbiol. 1994;41:119–23. DOIPubMedGoogle Scholar
- Kolakovich KA, Gluzman IY, Duffin KL, Goldberg DE. Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. Mol Biochem Parasitol. 1997;87:123–35. DOIPubMedGoogle Scholar
- Rockett KA, Playfair JHL, Ashall F, Targett GAT, Angliker H, Shaw E. Inhibition of intraerythrocytic development of Plasmodium falciparum by proteinase inhibitors. FEBS Lett. 1990;259:257–9. DOIPubMedGoogle Scholar
Page created: December 13, 2010
Page updated: December 13, 2010
Page reviewed: December 13, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.