Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 5, Number 5—October 1999

The Economic Impact of Pandemic Influenza in the United States: Priorities for Intervention

Martin I. MeltzerComments to Author , Nancy J. Cox, and Keiji Fukuda
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Main Article

Table 4

Cost of vaccinationa during an influenza pandemic, with specific costs assigned to side effects of vaccination

Item Probability of side effectb Cost of case of side effect ($)b Lower-cost scenario ($/patient) Upper-cost scenario ($/patient)
Assumed cost of vaccinationa (excluding side effects) 18 59
Side effects
Mildc 0.0325 94 3.05 3.05
GBSd 0.000002 100,800 0.20 0.20
Anaphylaxis 0.000000157 2,490 0.01 0.01
Total cost per patient 21.26 62.26

aThe cost of vaccination includes the cost of the vaccine, the cost of administering the vaccine, value of time spent by a person traveling to and from the place of vaccination, and patient-associated travel costs. Included in the costs of the vaccine are any costs associated with the rapid production of a larger-than-usual number of doses and the rapid delivery and correct storage of doses at vaccination sites around the country. For $18, the costs were assumed to be $10 for vaccine + administration, $4 patient time (half hour), $4 patient travel costs. For $59, the costs were assumed to be $20 for vaccine + administration (this could include the cost of two doses), $32 patient time (two trips at 2 hours per trip), and $7 patient travel costs. For comparison, a review of 10 published articles found a range of $5 to $22 per dose of vaccine, with a medium [sic] cost of $14 per dose (10). Additional details are provided in the background paper (see methods section). These breakdowns are illustrations only of what might be deemed reasonable estimates of time and cost. Actual costs might vary substantially and will depend on the number of doses needed to achieve a satisfactory protective response, as well as the efficiency of giving vaccinations to millions of persons.
bProbabilities and average cost of treating each category of side effect were derived from (3).
cMild side effects include sore arms due to vaccination, headaches, and other minor side effects that may require a visit to a physician or may cause the patient to miss 1 to 2 days of work.
dGBS = Guillain Barré syndrome.

Main Article

  1. Patriarca  PA, Cox  NJ. Influenza pandemic preparedness plan for the United States. J Infect Dis. 1997;176(Suppl 1):S47. DOIPubMed
  2. Simonsen  L, Clarke  MJ, Schonberger  LB, Arden  NH, Cox  NJ, Fukuda  K. Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J Infect Dis. 1998;178:5360.PubMed
  3. Office of Technology Assessment. U.S. Congress. Cost effectiveness of influenza vaccination. Washington: Government Printing Office; 1981.
  4. Kavet  J. A perspective on the significance of pandemic influenza. Am J Public Health. 1977;67:106370. DOIPubMed
  5. Campbell  DS, Rumley  MA. Cost-effectiveness of the influenza vaccine in a healthy, working-age population. J Occup Environ Med. 1997;39:40814. DOIPubMed
  6. Carrat  F, Valleron  A-J. Influenza mortality among the elderly in France, 1980-90: how many deaths may have been avoided through vaccination? J Epidemiol Community Health. 1995;49:41925. DOIPubMed
  7. Riddiough  MA, Sisk  JE, Bell  JC. Influenza vaccination: cost-effectiveness and public policy. JAMA. 1983;249:318995. DOIPubMed
  8. Patriarca  PA, Arden  NH, Koplan  JP, Goodman  RA. Prevention and control of type A influenza infections in nursing homes: benefits and costs of four approaches using vaccination and amantadine. Ann Intern Med. 1987;107:73240.PubMed
  9. Schoenbaum  SC. Economic impact of influenza: the individuals perspective. Am J Med. 1987;82(Supp 6A):2630. DOIPubMed
  10. Jefferson  T, Demicheli  V. Socioeconomics of influenza. In: Nicholson KG, Webster RG, Hay AJ, editors. Textbook of influenza. London (UK): Blackwell Science; 1998. p. 541-7.
  11. Schoenbaum  SC, McNeil  BJ, Kavet  J. The swine-influenza decision. N Engl J Med. 1976;295:75965.PubMed
  12. Cliff  AD, Haggett  P. Statistical modelling of measles and influenza outbreaks. Stat Methods Med Res. 1993;2:4373. DOIPubMed
  13. Critchfield  GC, Willard  KE. Probabilistic analysis of decision trees using Monte Carlo simulation. Med Decis Making. 1986;6:8592. DOIPubMed
  14. Dobilet  P, Begg  CB, Weinstein  MC, Braun  P, McNeil  BJ. Probabilistic sensitivity analysis using Monte Carlo simulation: a practical approach. Med Decis Making. 1985;5:15777. DOIPubMed
  15. Dittus  RS, Roberts  SD, Wilson  JR. Quantifying uncertainty in medical decisions. J Am Coll Cardiol. 1989;14:23A8.PubMed
  16. U.S. Bureau of the Census. Statistical abstract of the United States: 1997. 117th ed. Washington: The Bureau; 1997.
  17. Centers for Disease Control and Prevention. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 1998;47(RR-6):126.PubMed
  18. Evans  M, Hastings  N, Peacock  B. Statistical distributions. 2nd ed. New York: John Wiley; 1993.
  19. Glezen  PW. Emerging infections: pandemic influenza. Epidemiol Rev. 1996;18:6476.PubMed
  20. Mullooly  JP, Barker  WH. Impact of type A influenza on children: a retrospective study. Am J Public Health. 1982;72:100816. DOIPubMed
  21. Barker  WH, Mullooly  JP. Impact of epidemic type A influenza in a defined adult population. Am J Epidemiol. 1980;112:798813.PubMed
  22. Simonsen  L, Clarke  MJ, Williamson  GD, Stroup  DF, Arden  NH, Schonberger  LB. The impact of influenza epidemics on mortality: introducing a severity index. Am J Public Health. 1997;87:194450. DOIPubMed
  23. Fox  JP, Hall  CE, Cooney  MK, Foy  HM. Influenzavirus infections in Seattle families, 1975-1979. I. Study design, methods and the occurrence of infections by time and age. Am J Epidemiol. 1982;116:21227.PubMed
  24. Glezen  WP, Decker  M, Joseph  SW, Mercready  RG. Acute respiratory disease associated with influenza epidemics in Houston, 1981-1983. J Infect Dis. 1987;155:111926.PubMed
  25. Serfling  RE. Sherman Il, Houseworth WJ. Excess pneumonia-influenza mortality by age and sex in three major influenza A2 epidemics, United States, 1957-58, 1960 and 1963. Am J Epidemiol. 1967;86:43341.PubMed
  26. Barker  WH, Mullooly  JP. Pneumonia and influenza deaths during epidemics: implications for prevention. Arch Intern Med. 1982;142:859. DOIPubMed
  27. Glezen  WP, Payne  AA, Snyder  DN, Downs  TD. Mortality and influenza. J Infect Dis. 1982;146:31321.PubMed
  28. McBean  AM, Babish  JD, Warren  JL. The impact and cost of influenza in the elderly. Arch Intern Med. 1993;153:210511. DOIPubMed
  29. Barker  WH. Excess pneumonia and influenza associated hospitalization during influenza epidemics in the United States, 1970-78. Am J Public Health. 1986;76:7615. DOIPubMed
  30. Haddix  AC, Teutsch  SM, Shaffer  PA, Dunet  DO. Prevention effectiveness. New York: Oxford University Press; 1996.
  31. Fed Regist. 1996;61:463012.
  32. Kaufmann  AF, Meltzer  MI, Schmid  GP. The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis. 1997;3:8394. DOIPubMed
  33. Robinson  LJ, Barry  PJ. The competitive firm's response to risk. New York: Macmillian; 1987.
  34. Neustadt  RE, Fineberg  HV. The swine flu affair: decision making on a slippery disease. Washington: U.S. Department of Health Education, and Welfare; 1978.

Main Article

Page created: December 15, 2010
Page updated: December 15, 2010
Page reviewed: December 15, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.