Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 7, Number 3—June 2001

Seasonal Variation in Host Susceptibility and Cycles of Certain Infectious Diseases

Scott F. DowellComments to Author 
Author affiliation: Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Main Article


Observations on the seasonal occurrence of infectious diseases

Observation Examples
Pathogens peak at characteristic times in all seasons of the year Winter: influenza, pneumococcus, rotavirus
Spring: RSV, measles
Summer: polio, other enteroviruses
Fall: parainfluenza virus type 1
Timing and duration of peaks for each pathogen are similar from year to year Measles: regular pattern since 1703 (1)
Influenza: annual peak varies by only 5 to 10 weeks in the United States (6)
Onset of epidemics often occurs simultaneously in areas that are geographically dispersed and have different weather conditions and diverse populations Influenza: simultaneous outbreaks across North America, 16 European countries, and 6 Chinese provinces (7)
Pneumococcus: simultaneous outbreaks in seven surveillance areas (8)
Latitude is a critical determinant of timing and magnitude of peaks An increasing magnitude of seasonal peaks as distance from the equator increases has been documented for polio (9) and rotavirus (10) and reported for influenza (11).
Pathogens can be detected in the off-season despite lower incidence of disease and virtual absence of epidemics Meningococcus: no decrease in carriage in the off-season, despite absence of epidemic disease (12)
RSV: sporadic summer viral isolation but no epidemic spread (13)
Influenza: sporadic summer isolation, occasional clusters of disease without epidemic spread (14)

RSV = respiratory syncytial virus. RSV peaks in the winter or spring in the United States, depending on location. For simplicity, it is listed here as a spring pathogen.

Main Article

  1. Brownlee  J. An investigation into the periodicity of measles epidemics in London from 1703 to the present day by the method of the periodogram. Philosophical Transactions of the Royal Society of London 1918;B 208:225-50.
  2. Anderson  RM, Grenfell  BT, May  RM. Oscillatory fluctuations in the incidence of infectious disease and the impact of vaccination: time series analysis. J Hyg Camb. 1984;93:587608. DOIPubMedGoogle Scholar
  3. Riedo  FX, Plikaytis  B, Broome  C. Epidemiology and prevention of meningococcal disease. Pediatr Infect Dis J. 1995;14:64357. DOIPubMedGoogle Scholar
  4. Witte  JJ, Karchmer  A, Case  M, Herrmann  KL, Abrutyn  E, Kassanoff  I, Epidemiology of rubella. Am J Dis Child. 1969;118:10711.PubMedGoogle Scholar
  5. Török  TJ, Kilgore  PE, Clarke  MJ, Holman  RC, Bresee  JS, Glass  RI. Visualizing geographic and temporal trends in rotavirus activity in the United States, 1991 to 1996. National Respiratory and Enteric Virus Surveillance System Collaborating Laboratories. Pediatr Infect Dis J. 1997;16:9416.PubMedGoogle Scholar
  6. Centers for Disease Control and Prevention. Update: Influenza activity--United States, 1999-2000 season. MMWR Morb Mortal Wkly Rep. 2000;49:1737.PubMedGoogle Scholar
  7. Centers for Disease Control and Prevention. Update: Influenza activity--United States and worldwide, 1995-96 season, and composition of the 1996-97 influenza vaccine. MMWR Morb Mortal Wkly Rep. 1996;45:3269.PubMedGoogle Scholar
  8. Dowell  SF, Whitney  C, Wright  C, Schuchat  A. Seasonal changes in invasive pneumococcal disease. Emerg Infect Dis. 2001. In press.PubMedGoogle Scholar
  9. Paccaud  MF. World trends in poliomyelitis morbidity and mortality, 1951-1975. World Health Stat Q. 1979;32:198224.PubMedGoogle Scholar
  10. Cook  SM, Glass  R, LeBaron  C, Ho  M-S. Global seasonality of rotavirus infections. Bull World Health Organ. 1990;68:1717.PubMedGoogle Scholar
  11. Hope-Simpson  RE, Golubev  D. A new concept of the epidemic process of influenza A virus. Epidemiol Infect. 1987;99:554. DOIPubMedGoogle Scholar
  12. Blakebrough  IS, Greenwood  B, Whittle  H, Bradley  A, Gilles  H. The epidemiology of infections due to Neisseria meningitidis and Neisseria lactamica in a northern Nigerian community. J Infect Dis. 1982;146:62637. DOIPubMedGoogle Scholar
  13. Centers for Disease Control and Prevention. Update: respiratory syncytial virus activity - United States, 1998-1999 Season. MMWR Morb Mortal Wkly Rep. 1999;48:110415.PubMedGoogle Scholar
  14. Kohn  MA, Farley  T, Sundin  D, Tapia  R, McFarland  L, Arden  N. Three summertime outbreaks of influenza type A. J Infect Dis. 1995;172:2469. DOIPubMedGoogle Scholar
  15. Cox  NJ, Fukuda  K. Influenza. Infect Dis Clin North Am. 1998;12:2738. DOIPubMedGoogle Scholar
  16. Cox  NJ, Subbarao  K. Influenza. Lancet. 1999;354:127782. DOIPubMedGoogle Scholar
  17. Langmuir  AD, Schoenbaum  S. The epidemiology of influenza. Hosp Pract. 1976;11:4956.PubMedGoogle Scholar
  18. Hammond  GW, Raddatz  R, Gelskey  D. Impact of atmospheric dispersion and transport of viral aerosols on the epidemiology of influenza. Rev Infect Dis. 1989;11:4947. DOIPubMedGoogle Scholar
  19. Kim  PE, Musher  D, Glezen  W, Rodriguez-Barradas  M, Nahm  W, Wright  C. Association of invasive pneumococcal disease with season, atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis. 1996;22:1006. DOIPubMedGoogle Scholar
  20. Checkley  W, Epstein  L, Gilman  R, Figueroa  D, Cama  RI, Patz  JA. Effects of El Niño and ambient temperature on hospital admissions for diarrheal diseases in Peruvian children. Lancet. 2000;355:44250.PubMedGoogle Scholar
  21. Chew  FT, Doraisingham  S, Ling  A, Kumarasinghe  G, Lee  B. Seasonal trends of viral respiratory tract infections in the tropics. Epidemiol Infect. 1998;121:1218. DOIPubMedGoogle Scholar
  22. Sung  RY, Murray  H, Chan  R, Davies  D, French  G. Seasonal patterns of respiratory syncytial virus infection in Hong Kong: a preliminary report. J Infect Dis. 1987;156:5278. DOIPubMedGoogle Scholar
  23. Nathanson  N, Martin  J. The epidemiology of poliomyelitis: enigmas surrounding its appearance, epidemicity, and disappearance. Am J Epidemiol. 1979;110:67292.PubMedGoogle Scholar
  24. Greenwood  B. The epidemiology of acute bacterial meningitis in tropical Africa. Bacterial Meningitis. London: Academic Press; 1987. p. 61-91.
  25. Greenwood  BM, Blakebrough  I, Bradley  A, Wali  S, Whittle  H. Meningococcal disease and season in sub-Saharan Africa. Lancet. 1984;i:133942. DOIPubMedGoogle Scholar
  26. Diermayer  M, Hedberg  K, Hoesly  F, Fischer  M, Perkins  B, Reeves  M, Epidemic serogroup B meningococcal disease in Oregon: the evolving epidemiology of the ET-5 strain. JAMA. 1999;281:14937. DOIPubMedGoogle Scholar
  27. D'Alessio  D, Minor  T, Allen  C, Tsiatis  A, Nelson  D. A study of the proportions of swimmers among well controls and children with enterovirus-like illness shedding or not shedding an enterovirus. Am J Epidemiol. 1981;113:53341.PubMedGoogle Scholar
  28. Hawley  HB, Morin  D, Geraghty  M, Tomkow  J, Phillips  C. Coxsackievirus B epidemic at a boys' summer camp: isolation of virus from swimming water. JAMA. 1973;226:336. DOIPubMedGoogle Scholar
  29. Hamer  W. Epidemic disease in England--the evidence of variability and persistency of type. Lancet. 1906;11:7339.
  30. Fine  PE, Clarkson  J. Measles in England and Wales - I: an analysis of factors underlying seasonal patterns. Int J Epidemiol. 1982;11:514. DOIPubMedGoogle Scholar
  31. Rojansky  N, Brzezinski  A, Schenker  J. Seasonality in human reproduction: an update. Hum Reprod. 1992;7:73545.PubMedGoogle Scholar
  32. Wehr  TA, Moul  D, Barbato  G, Giesen  HA, Seidel  JA, Barker  C, Conservation of photoperiod-responsive mechanisms in humans. Am J Physiol. 1993;265:R84657.PubMedGoogle Scholar
  33. Carlson  LL, Zimmermann  A, Lynch  G. Geographic differences for delay of sexual maturation in Peromyscus leukopus: effects of photoperiod, pinealectomy, and melatonin. Biol Reprod. 1989;41:100413. DOIPubMedGoogle Scholar
  34. Lincoln  GA. Reproductive seasonality and maturation throughout the complete life-cycle in the mouflon ram (ovis musimon). Anim Reprod Sci. 1998;53:87105. DOIPubMedGoogle Scholar
  35. Rhind  SM, McMillen  S, Duff  E, Hirst  D, Wright  S. Seasonality of meal patterns and hormonal correlates in red deer. Physiol Behav. 1998;65:295302. DOIPubMedGoogle Scholar
  36. Herndon  JG, Bein  M, Nordmeyer  D, Turner  J. Seasonal testicular function in male rhesus monkeys. Horm Behav. 1996;30:26671. DOIPubMedGoogle Scholar
  37. Chan  PJ, Hutz  R, Dukelow  W. Nonhuman primate in vitro fertilization: seasonality, cumulus cells, cyclic nucleotides, ribonucleic acid, and viability assays. Fertil Steril. 1982;38:60915.PubMedGoogle Scholar
  38. Löscher  W, Fiedler  M. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VI. Seasonal influences on maximal electroshock and pentylentetrazol seizure thresholds. Epilepsy Res. 1996;25:310. DOIPubMedGoogle Scholar
  39. Sargeant  JM, Shoukri  M, Martin  S, Leslie  K, Lissemore  K. Investigating potential risk factors for seasonal variation: an example using graphical and spectral analysis methods based on the production of milk components in dairy cattle. Prev Vet Med. 1998;36:16778. DOIPubMedGoogle Scholar
  40. Yellon  SM, Fagoaga  O, Nehlsen-Cannarella  S. Influence of photoperiod on immune cell functions in the male Siberian hamster. Am J Physiol. 1999;276:R97102.PubMedGoogle Scholar
  41. Demas  GE, Nelson  R. Exogenous melatonin enhances cell-mediated, but not humoral, immune function in adult male deer mice (Peromyscus maniculatus). J Biol Rhythms. 1998;13:24552. DOIPubMedGoogle Scholar
  42. Feigin  RD, San Joaquin  VH, Haymond  MW, Wyatt  RG. Daily periodicity of susceptibility of mice to pneumococcal infection. Nature. 1969;224:37980. DOIPubMedGoogle Scholar
  43. Shackelford  PG, Feigin  RD. Periodicity of susceptibility to pneumococcal infection: influence of light and adrenocortical secretions. Science. 1973;182:2857. DOIPubMedGoogle Scholar
  44. Wongwiwat  M, Sukapanit  S, Triyanond  C, Sawyer  WD. Circadian rhythm of the resistance of mice to acute pneumococcal infection. Infect Immun. 1972;5:4428.PubMedGoogle Scholar
  45. Sack  RL, Brandes  R, Kendall  A, Lewy  A. Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med. 2000;343:10707. DOIPubMedGoogle Scholar
  46. Sher  L, Goldman  D, Ozaki  N, Rosenthal  N. The role of genetic factors in the etiology of seasonal affective disorder. J Affect Disord. 1999;53:20310. DOIPubMedGoogle Scholar
  47. Eastman  CI, Young  M, Fogg  L, Liu  L, Meaden  P. Bright light treatment of winter depression: a placebo-controlled trial. Arch Gen Psychiatry. 1998;55:8839. DOIPubMedGoogle Scholar
  48. Pell  JP, Cobbe  S. Seasonal variations in coronary heart disease. QJM. 1999;92:68996. DOIPubMedGoogle Scholar
  49. Ownby  HE, Frederick  J, Mortensen  R, Ownby  D, Russo  J. Seasonal variations in tumor size at diagnosis and immunological responses in human breast cancer. Invasion Metastasis. 1986;6:24656.PubMedGoogle Scholar
  50. Calvo  JR, Rafil-El-Idrissi  M, Pozo  D, Guerrero  J. Immunomodulatory role of melatonin: specific binding sites in human and rodent lymphoid cells. J Pineal Res. 1995;18:11926. DOIPubMedGoogle Scholar
  51. Boctor  FN, Charmy  R, Cooper  E. Seasonal differences in the rhythmicity of human male and female lymphocyte blastogenic responses. Immunol Invest. 1989;18:77584. DOIPubMedGoogle Scholar
  52. Maes  M, Stevens  W, Scharpe  S, Bosmans  E, De Meyer  F, D'Hondt  P, Seasonal variation in peripheral blood leukocyte subsets and in serum interleukin-6, and soluble interleukin-2 and -6 receptor concentrations in normal volunteers. Experientia. 1994;50:8219. DOIPubMedGoogle Scholar
  53. Nelson  RJ, Drazen  D. Melatonin mediates seasonal adjustments in immune function. Reprod Nutr Dev. 1999;39:38398. DOIPubMedGoogle Scholar
  54. Paigen  B, Ward  E, Reilly  A, Houten  L, Gurtoo  HL, Minowada  J, Seasonal variation of aryl hydrocarbon hydroxylase activity in human lymphocytes. Cancer Res. 1981;41:275761.PubMedGoogle Scholar
  55. Shadrin  AS, Marinich  I, Taros  L. Experimental and epidemiological estimation of seasonal and climato-geographical features of non-specific resistance of the organism to influenza. J Hyg Epidemiol Microbiol Immunol. 1977;21:15561.PubMedGoogle Scholar
  56. Schulman  JL, Kilbourne  E. Experimental transmission of influenza virus infection in mice. II. Some factors affecting the incidence of transmitted infections. J Exp Med. 1963;118:26775. DOIPubMedGoogle Scholar
  57. Swartz  TA, Skalska  P, Gerichter  C. Routine administration of oral polio vaccine in a subtropical area. Factors possibly influencing sero-conversion rates. J Hyg Camb. 1972;70:71926. DOIPubMedGoogle Scholar
  58. World Health Organization Collaborative Study Group on Oral Poliovirus V. Factors affecting the immunogenicity of oral poliovirus vaccine: a prospective evaluation in Brazil and the Gambia. J Infect Dis. 1995;171:1097106.PubMedGoogle Scholar
  59. Deming  MS, Linkins  R, Jaitch  K, Hull  H. The clinical efficacy of trivalent oral polio vaccine in the Gambia by season of vaccine administration. J Infect Dis. 1997;175(suppl1):S2547. DOIPubMedGoogle Scholar
  60. Schonberger  LB, McGowan  JJ, Gregg  M. Vaccine-associated poliomyelitis in the United States, 1961-1972. Am J Epidemiol. 1976;104:20211.PubMedGoogle Scholar

Main Article

Page created: April 26, 2012
Page updated: April 26, 2012
Page reviewed: April 26, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.