Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 7, Number 3—June 2001
Dispatch

Expanding Drug Resistance through Integron Acquisition by IncFI Plasmids of Salmonella enterica Typhimurium

Alessandra Carattoli*Comments to Author , Laura Villa*, Cristina Pezzella*, Eugenio Bordi†, and Paolo Visca†‡
Author affiliations: *Istituto Superiore di Sanità, Rome, Italy; †National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy; ‡Università di Roma Tre, Rome, Italy

Main Article

Figure 1

Structural organization of integrons carried by IncFI plasmids. Numbers above each lane indicate plasmid reference numbers as defined (Table). Lane C shows the plasmidless E. oli K-12 strain CSH26 (11). A: agarose (0.8%) gel electrophoresis in 1x Tris-borate-EDTA buffer of plasmid DNA extracted from E. coli K-12 exconjugants. DNA was stained with ethidium bromide and visualized under UV light. B: Southern blot hybridization of plasmids shown in panel A with the intI1 probe. C: Southern blot hybr

Figure 1. . Structural organization of integrons carried by IncFI plasmids. Numbers above each lane indicate plasmid reference numbers as defined (Table). Lane C shows the plasmidless E. oli K-12 strain CSH26 (11). A: agarose (0.8%) gel electrophoresis in 1x Tris-borate-EDTA buffer of plasmid DNA extracted from E. coli K-12 exconjugants. DNA was stained with ethidium bromide and visualized under UV light. B: Southern blot hybridization of plasmids shown in panel A with the intI1 probe. C: Southern blot hybridization with the intI1 probe of PvuII-BamHI double-digested DNA from E. coli K-12 exconjugants. The DNA was extracted as described (7). The intI1 probe was amplified with primers corresponding to nt 4680-4700 and nt 5252-5232 of the released Tn21 sequence (GenEMBL accession no. AF071413). Plasmid pACYC184::Tn21 (10) was used as the template. The probe was labeled with [-32P]dCTP by using a random priming kit (GibcoBRL). Chromosomal DNA fluoresced because of weak trapping of partially degraded plasmids. D: schematic representation of In-t2 and In-t1 integrons. The thick bars above each structure represent the DNA fragments recognized by the intI1 probe. The 4.0-kb PvuII-BamHI fragment (In-t2) encompasses the intI1 gene segment downstream of the conserved PvuII site (0.6 kb), the oxa1 and aadA1 gene cassettes (2.2 kb), and the 3'-CS comprising the sul1 gene upstream of the BamHI site (1.2 kb) (7,8). The 1.2-kb PvuII-BamHI fragment (In-t1) encompasses the intI1 gene segment and part of the aadB gene cassette (7).

Main Article

References
  1. Glynn  MK, Bopp  C, Dewitt  W, Dabney  P, Mokhtar  M, Angulo  FJ. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N Engl J Med. 1998;338:13338. DOIPubMedGoogle Scholar
  2. Prager  R, Liesegang  A, Rabsch  W, Gericke  B, Thiel  W, Voigt  W, Clonal relationship of Salmonella enterica serovar Typhimurium phage type DT104 in Germany and Austria. Zentralbl Bakteriol. 1999;289:399414. DOIPubMedGoogle Scholar
  3. Anderson  ES, Threlfall  EJ, Carr  JM, McConnell  MM, Smith  HR. Clonal distribution of resistance plasmid-carrying Salmonella typhimurium, mainly in the Middle East. J Hyg (Lond). 1977;79:42548. DOIPubMedGoogle Scholar
  4. Domart  A, Robineau  M, Stroh  A, Dubertret  LM, Modai  J. Septicemia due to Salmonella wien. Diagnostic, therapeutic and epidemiologic problems. Ann Med Interne (Paris). 1974;125:9158.PubMedGoogle Scholar
  5. Casalino  MA, Comanducci  A, Nicoletti  M, Maimone  F. Stability of plasmid content in Salmonella wien in late phases of the epidemic history. Antimicrob Agents Chemother. 1984;25:499501.PubMedGoogle Scholar
  6. Frost  JA, Rowe  B, Ward  LR, Threlfall  EJ. Characterization of resistance plasmids and carried phages in an epidemic clone of multi-resistant Salmonella typhimurium in India. J Hyg (Lond). 1982;88:193204. DOIPubMedGoogle Scholar
  7. Tosini  F, Visca  P, Luzzi  I, Dionisi  AM, Pezzella  C, Petrucca  A, Class 1 integron-borne multiple-antibiotic resistance carried by IncFI and IncL/M plasmids in Salmonella enterica serotype Typhimurium. Antimicrob Agents Chemother. 1998;42:30538.PubMedGoogle Scholar
  8. Hall  RM, Collis  CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol. 1995;15:593600. DOIPubMedGoogle Scholar
  9. Liebert  CA, Hall  RM, Summers  AO. Transposon Tn21, a flagship of the floating genome. Microbiol Mol Biol Rev. 1999;63:50722.PubMedGoogle Scholar
  10. Colonna  B, Bernardini  M, Micheli  G, Maimone  F, Nicoletti  M, Casalino  M. The Salmonella wien virulence plasmid pZM3 carries Tn1935, a multiresistance transposon containing a composite IS1936-kanamycin resistance element. Plasmid. 1988;20:22131. DOIPubMedGoogle Scholar
  11. Maimone  F, Colonna  B, Bazzicalupo  P, Oliva  B, Nicoletti  M, Casalino  MA. Plasmids and transposable elements in Salmonella wien. J Bacteriol. 1979;139:36975.PubMedGoogle Scholar
  12. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disc susceptibility tests. M2A2. Villanova, Pa: The Committee; 1992.
  13. Kado  CI, Liu  S. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981;145:136573.PubMedGoogle Scholar

Main Article

Page created: April 26, 2012
Page updated: April 26, 2012
Page reviewed: April 26, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external