Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 14, Number 2—February 2008
Research

Unexpected Occurrence of Plasmid-Mediated Quinolone Resistance Determinants in Environmental Aeromonas spp.

Vincent Cattoir*†‡, Laurent Poirel*†, Camille Aubert*†, Claude-James Soussy‡, and Patrice Nordmann*†Comments to Author 
Author affiliations: *Institut Nationale de la Santé et de la Recherche Médicale Unité 914, Le Kremlin-Bicêtre, France; †Hôpital de Bicêtre, Le Kremlin-Bicêtre; ‡Université Paris XII, Créteil, France;

Main Article

Figure 2

Genetic environments of the qnrS2 gene in plasmid p37 from Aeromonas punctata 37 and comparison with related plasmid structures. Plasmid pFBAOT6 is from A. punctata from the United Kingdom (23); plasmids pGNB2 and pMG308 are from a wastewater treatment plant from Germany (unknown bacterial reservoir) (24) and from a non-Typhi Salmonella clinical isolate from the United States (25), respectively. Recombinant plasmid pAS37 has been obtained from our study. Open reading frames (ORFs) are indicated by horizontal arrows. The right and left inverted repeats (IRR and IRL) are indicated, and duplication sites (CCTCC) are represented by black triangles. The EcoRI- restriction sites that have been used for cloning experiments are indicated. The identified mobile insertion cassette element is bracketed by IRL and IRR of 22-bp size (bases in black are identical, and bases in white are different).

Figure 2. Genetic environments of the qnrS2 gene in plasmid p37 from Aeromonas punctata 37 and comparison with related plasmid structures. Plasmid pFBAOT6 is from A. punctata from the United Kingdom (23); plasmids pGNB2 and pMG308 are from a wastewater treatment plant from Germany (unknown bacterial reservoir) (24) and from a non-Typhi Salmonella clinical isolate from the United States (25), respectively. Recombinant plasmid pAS37 has been obtained from our study. Open reading frames (ORFs) are indicated by horizontal arrows. The right and left inverted repeats (IRR and IRL) are indicated, and duplication sites (CCTCC) are represented by black triangles. The EcoRI- restriction sites that have been used for cloning experiments are indicated. The identified mobile insertion cassette element is bracketed by IRL and IRR of 22-bp size (bases in black are identical, and bases in white are different).

Main Article

References
  1. Hooper  DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001;7:33741.PubMedGoogle Scholar
  2. Ruiz  J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother. 2003;51:110917. DOIPubMedGoogle Scholar
  3. Martinez-Martinez  L, Pascual  A, Jacoby  GA. Quinolone resistance from a transferable plasmid. Lancet. 1998;351:7979. DOIPubMedGoogle Scholar
  4. Tran  JH, Jacoby  GA, Hooper  DC. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother. 2005;49:11825. DOIPubMedGoogle Scholar
  5. Tran  JH, Jacoby  GA, Hooper  DC. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob Agents Chemother. 2005;49:30502. DOIPubMedGoogle Scholar
  6. Nordmann  P, Poirel  L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother. 2005;56:4639. DOIPubMedGoogle Scholar
  7. Martinez-Martinez  L, Pascual  A, Garcia  I, Tran  J, Jacoby  GA. Interaction of plasmid and host quinolone resistance. J Antimicrob Chemother. 2003;51:10379. DOIPubMedGoogle Scholar
  8. Robicsek  A, Jacoby  GA, Hooper  DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6:62940. DOIPubMedGoogle Scholar
  9. Hata  M, Suzuki  M, Matsumoto  M, Takahashi  M, Sato  K, Ibe  S, Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother. 2005;49:8013. DOIPubMedGoogle Scholar
  10. Jacoby  GA, Walsh  KE, Mills  DM, Walker  VJ, Oh  H, Robicsek  A, qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother. 2006;50:117882. DOIPubMedGoogle Scholar
  11. Poirel  L, Rodriguez-Martinez  JM, Mammeri  H, Liard  A, Nordmann  P. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother. 2005;49:35235. DOIPubMedGoogle Scholar
  12. Cattoir  V, Poirel  L, Mazel  D, Soussy  CJ, Nordmann  P. Vibrio splendidus as the source of plasmid-mediated QnrS-like quinolone resistance determinants. Antimicrob Agents Chemother. 2007;51:26501. DOIPubMedGoogle Scholar
  13. Poirel  L, Liard  A, Rodriguez-Martinez  JM, Nordmann  P. Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. J Antimicrob Chemother. 2005;56:111821. DOIPubMedGoogle Scholar
  14. Dortet  L, Legrand  P, Soussy  CJ, Cattoir  V. Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. J Clin Microbiol. 2006;44:44718. DOIPubMedGoogle Scholar
  15. Yanez  MA, Catalan  V, Apraiz  D, Figueras  MJ, Martinez-Murcia  AJ. Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol. 2003;53:87583. DOIPubMedGoogle Scholar
  16. Cattoir  V, Poirel  L, Rotimi  V, Soussy  CJ, Nordmann  P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60:3947. DOIPubMedGoogle Scholar
  17. Poirel  L, Leviandier  C, Nordmann  P. Prevalence and genetic analysis of plasmid-mediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French university hospital. Antimicrob Agents Chemother. 2006;50:39927. DOIPubMedGoogle Scholar
  18. Goni-Urriza  M, Arpin  C, Capdepuy  M, Dubois  V, Caumette  P, Quentin  C. Type II topoisomerase quinolone resistance-determining regions of Aeromonas caviae, A. hydrophila, and A. sobria complexes and mutations associated with quinolone resistance. Antimicrob Agents Chemother. 2002;46:3509. DOIPubMedGoogle Scholar
  19. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 17th informational supplement M100–S17. Wayne (PA): The Institute; 2007.
  20. Aubron  C, Poirel  L, Ash  RJ, Nordmann  P. Carbapenemase-producing Enterobacteriaceae, US rivers. Emerg Infect Dis. 2005;11:2604.PubMedGoogle Scholar
  21. Casas  C, Anderson  EC, Ojo  KK, Keith  I, Whelan  D, Rainnie  D, Characterization of pRAS1-like plasmids from atypical North American psychrophilic Aeromonas salmonicida. FEMS Microbiol Lett. 2005;242:5963. DOIPubMedGoogle Scholar
  22. Kieser  T. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid. 1984;12:1936. DOIPubMedGoogle Scholar
  23. Rhodes  G, Parkhill  J, Bird  C, Ambrose  K, Jones  MC, Huys  G, Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. Appl Environ Microbiol. 2004;70:7497510. DOIPubMedGoogle Scholar
  24. Bonemann  G, Stiens  M, Puhler  A, Schlueter  A. Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Antimicrob Agents Chemother. 2006;50:307580. DOIPubMedGoogle Scholar
  25. Gay  K, Robicsek  A, Strahilevitz  J, Park  CH, Jacoby  GA, Barrett  TJ, Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis. 2006;43:297304. DOIPubMedGoogle Scholar
  26. De Palmenaer  D, Vermeiren  C, Mahillon  J. IS231-MIC231 elements from Bacillus cereus sensu lato are modular. Mol Microbiol. 2004;53:45767. DOIPubMedGoogle Scholar
  27. Chatzipanagiotou  S, Ioannidou  V, Ioannidis  A, Nicolaou  C, Papavasileiou  E, Chaniotaki  S, Absence of the plasmid-mediated quinolone resistance qnrA gene among Campylobacter jejuni clinical isolates from Greece. Int J Antimicrob Agents. 2005;26:2612. DOIPubMedGoogle Scholar
  28. Kehrenberg  C, Friederichs  S, de Jong  A, Michael  GB, Schwarz  S. Identification of the plasmid-borne quinolone resistance gene qnrS in Salmonella enterica serovar Infantis. J Antimicrob Chemother. 2006;58:1822. DOIPubMedGoogle Scholar
  29. Hopkins  KL, Wootton  L, Day  MR, Threlfall  EJ. Plasmid-mediated quinolone resistance determinant qnrS1 found in Salmonella enterica strains isolated in the UK. J Antimicrob Chemother. 2007;59:10715. DOIPubMedGoogle Scholar
  30. Poirel  L, Nguyen  TV, Weintraub  A, Leviandier  C, Nordmann  P. Plasmid-mediated quinolone resistance determinant qnrS in Enterobacter cloacae. Clin Microbiol Infect. 2006;12:10213. DOIPubMedGoogle Scholar
  31. Chen  YT, Shu  HY, Li  LH, Liao  TL, Wu  KM, Shiau  YR, Complete nucleotide sequence of pK245, a 98-kilobase plasmid conferring quinolone resistance and extended-spectrum-beta-lactamase activity in a clinical Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2006;50:38616. DOIPubMedGoogle Scholar
  32. Wu  JJ, Ko  WC, Tsai  SH, Yan  JJ. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob Agents Chemother. 2007;51:12237. DOIPubMedGoogle Scholar
  33. Cavaco  LM, Hansen  DS, Friis-Moller  A, Aarestrup  FM, Hasman  H, Frimodt-Moller  N. First detection of plasmid-mediated quinolone resistance (qnrA and qnrS) in Escherichia coli strains isolated from humans in Scandinavia. J Antimicrob Chemother. 2007;59:8045. DOIPubMedGoogle Scholar
  34. Rhodes  G, Huys  G, Swings  J, McGann  P, Hiney  M, Smith  P, Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant tetA. Appl Environ Microbiol. 2000;66:388390. DOIPubMedGoogle Scholar
  35. Schmidt  AS, Bruun  MS, Dalsgaard  I, Larsen  JL. Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol. 2001;67:567582. DOIPubMedGoogle Scholar
  36. Young  HK. Antimicrobial resistance spread in aquatic environments. J Antimicrob Chemother. 1993;31:62735. DOIPubMedGoogle Scholar
  37. Poirel  L, Cattoir  V, Soares  A, Soussy  CJ, Nordmann  P. Novel Ambler class A β-lactamase LAP-1 and its association with the plasmid-mediated quinolone resistance determinant QnrS1. Antimicrob Agents Chemother. 2006;51:6317. DOIPubMedGoogle Scholar
  38. Kümmerer  K. Resistance in the environment. J Antimicrob Chemother. 2004;54:31120. DOIPubMedGoogle Scholar
  39. Beaber  JW, Hochhut  B, Waldor  MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427:724. DOIPubMedGoogle Scholar

Main Article

Page created: July 21, 2010
Page updated: July 21, 2010
Page reviewed: July 21, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external