Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 4—April 2010
Research

Use of Norovirus Genotype Profiles to Differentiate Origins of Foodborne Outbreaks

Linda VerhoefComments to Author , Harry Vennema, Wilfrid van Pelt, David Lees, Hendriek Boshuizen, Kathleen Henshilwood, Marion Koopmans, on behalf of the Food-Borne Viruses in Europe Network1

Author affiliations: National Institute for Public Health and the Environment, Bilthoven, the Netherlands (L. Verhoef, H. Vennema, W. van Pelt, H. Boshuizen, M. Koopmans); Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK (D. Lees, K. Henshilwood); 1Additional members of the Food-Borne Viruses in Europe Network are listed at the end of this article.

Main Article

Figure

Two-dimensional display of the correspondence analysis of 6 norovirus genotype profiles based on nucleotide sequences in which points close to each other are similar with regard to the pattern of relative frequencies across genotypes. Dimension 1 explains 59.12% and dimension 2 an additional 31.40%. In dimension 1, foodborne-feces (FB-feces; i.e., outbreak reported to be caused by food with the outbreak strain detected in human feces only) and bivalve mollusk (BM) genotype profiles are mutually

Figure. Two-dimensional display of the correspondence analysis of 6 norovirus genotype profiles based on nucleotide sequences in which points close to each other are similar with regard to the pattern of relative frequencies across genotypes. Dimension 1 explains 59.12% and dimension 2 an additional 31.40%. In dimension 1, foodborne-feces (FB-feces; i.e., outbreak reported to be caused by food with the outbreak strain detected in human feces only) and bivalve mollusk (BM) genotype profiles are mutually similar and differ from other profiles; the most distinct profile is person-borne (PB; i.e., an outbreak reported to be caused by person-to-person transmission with the outbreak strain detected in human feces). In dimension 2, food handler–borne (FHB; i.e., outbreak reported to be caused by an infected food handler contaminating the food with the outbreak strain detected in human feces), FB-feces, and unknown (UN; i.e., mode of transmission was not reported or was reported to be unknown with the outbreak strain detected in human feces) mutually correspond and differ from the mutually corresponding foodborne-food (FB-food; i.e., outbreak reported to be caused by food with the outbreak strain detected in food), BM, and PB.

Main Article

1Members of the Food-Borne Viruses in Europe Network: B. Böttiger, K. Mølbak, C. Johnsen (Denmark); K.-H. von Bonsdorff, L. Maunula, M. Kuusi (Finland); P. Pothier, K. Balay, J. Kaplon, G. Belliot, S. Le Guyader (France); E. Schreier, K. Stark, J. Koch, M. Höhne (Germany); G. Szücs, G. Reuter, K. Krisztalovics (Hungary); Ireland: M. Lynch, B. Foley, P. McKeown, S. Coughlan (Ireland); E. Duizer, A. Kroneman, Y. van Duynhoven (the Netherlands); K. Vainio, K. Nygard, G. Kapperud (Norway); M. Poljsak-Prijatelj, D. Barlic-Maganja, A. Hocevar Grom (Slovenia); F. Ruggeri, I. Di Bartolo (Italy); A Bosch, A. Dominguez, J. Buesa, A. Sanchez Fauquier, G. Hernández-Pezzi (Spain); K.-O. Hedlund, Y. Andersson, M. Thorhagen, M. Lysén, M. Hjertqvist (Sweden); D. Brown, B. Adak, J. Gray, J. Harris, M. Iturriza (United Kingdom).

Page created: December 23, 2010
Page updated: December 23, 2010
Page reviewed: December 23, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external