Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 8—August 2010
Research

Bat Coronaviruses and Experimental Infection of Bats, the Philippines

Shumpei Watanabe, Joseph S. Masangkay, Noriyo Nagata, Shigeru Morikawa, Tetsuya Mizutani, Shuetsu Fukushi, Phillip Alviola, Tsutomu Omatsu, Naoya Ueda, Koichiro Iha, Satoshi Taniguchi, Hikaru Fujii, Shumpei Tsuda, Maiko Endoh, Kentaro Kato, Yukinobu Tohya, Shigeru Kyuwa, Yasuhiro Yoshikawa, and Hiroomi AkashiComments to Author 
Author affiliations: University of Tokyo, Tokyo, Japan (S. Watanabe, N. Ueda, K. Iha, S. Taniguchi, H. Fujii, S. Tsuda, M. Endoh, K. Kato, S. Kyuwa, Y. Yoshikawa, H. Akashi); University of the Philippines Los Baños, Laguna, the Philippines (J.S. Masangkay, P. Alviola); National Institute of Infectious Diseases, Tokyo (N. Nagata, S. Morikawa, T. Mizutani, S. Fukushi, T. Omatsu); Nihon University, Kanagawa, Japan (Y. Tohya)

Main Article

Figure 1

Phylogenetic tree based on deduced amino acid sequences of partial RNA-dependent RNA polymerase of coronaviruses (CoVs), the Philippines. The 2 new viruses detected in this study are underlined. Percentage of replicate trees in which the associated taxa clustered in the bootstrap test (1,000 replicates) is shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. Evolutionary distances

Figure 1. Phylogenetic tree based on deduced amino acid sequences of partial RNA-dependent RNA polymerase of coronaviruses (CoVs), the Philippines. The 2 new viruses detected in this study are underlined. Percentage of replicate trees in which the associated taxa clustered in the bootstrap test (1,000 replicates) is shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. Evolutionary distances were computed by using the Poisson correction method and are shown as number of amino acid substitutions per site. All positions containing gaps and missing data were eliminated from the dataset. The final dataset included 120 positions. Phylogenetic analyses were conducted in MEGA4 (14). Coronaviruses used for comparisons and their GenBank accession numbers are human coronavirus (HCoV) 229E (HCoV-229E) (NC_002645), porcine epidemic diarrhea virus (PEDV) (NC_003436), transmissible gastroenteritis virus (TGEV) (NC_002306), feline infectious peritonitis virus (FIPV) (AY994055), human coronavirus NL63 (HCoV-NL63) (NC_005831), bat-CoV/A512/2005 (NC_009657), bat-CoV/A515/2005 (DQ648822), bat-CoV/A620/2005 (DQ648828), bat-CoV/A911/2005 (DQ648850), bat-CoV/GhanaKwan/19/2008 (FJ710046), bat-CoV/GhanaKwan/20/2008 (FJ710047), bat-CoV/M.das/Germany/D3.3/2007 (EU375854), bat-CoV/USA/RM-11 (EF544563), bat-CoV HKU2 (EF203064), HKU4 (NC_009019), HKU5 (NC_009020), HKU6 (DQ249224), HKU8 (DQ249228), HKU9 (NC_009021), CoV-HKU1 (NC_006577), human coronavirus (HCoV-OC43) (NC_005147), murine hepatitis virus (MHV) (NC_001846), bovine coronavirus (BCoV) (NC_003045), porcine hemagglutinating encephalomyelitis virus (PHEV) (NC_007732), human severe acute respiratory syndrome coronavirus (SARS) (SARS-human) (NC_004718), civet SARS-like coronavirus (SARS-civet) (AY304488), bat-SARS-like coronavirus HKU3 (bat-SARS-CoV HKU3) (NC_009694), infectious bronchitis virus (IBV) (NC_001451), and turkey coronavirus (AF124991).

Main Article

References
  1. Guan  Y, Zheng  BJ, He  YQ, Liu  XL, Zhuang  ZX, Cheung  CL, Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:2768. DOIPubMedGoogle Scholar
  2. Kan  B, Wang  M, Jing  H, Xu  H, Jiang  X, Yan  M, Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol. 2005;79:11892900. DOIPubMedGoogle Scholar
  3. Lau  SK, Woo  PC, Li  KS, Huang  Y, Tsoi  HW, Wong  BH, Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:140405. DOIPubMedGoogle Scholar
  4. Poon  LL, Chu  DK, Chan  KH, Wong  OK, Ellis  TM, Leung  YH, Identification of a novel coronavirus in bats. J Virol. 2005;79:20019. DOIPubMedGoogle Scholar
  5. Tang  XC, Zhang  JX, Zhang  SY, Wang  P, Fan  XH, Li  LF, Prevalence and genetic diversity of coronaviruses in bats from China. J Virol. 2006;80:748190. DOIPubMedGoogle Scholar
  6. Woo  PC, Lau  SK, Li  KS, Poon  RW, Wong  BH, Tsoi  HW, Molecular diversity of coronaviruses in bats. Virology. 2006;351:1807. DOIPubMedGoogle Scholar
  7. Vijaykrishna  D, Smith  GJ, Zhang  JX, Peiris  JS, Chen  H, Guan  Y. Evolutionary insights into the ecology of coronaviruses. J Virol. 2007;81:401220. DOIPubMedGoogle Scholar
  8. Carrington  CV, Foster  JE, Zhu  HC, Zhang  JX, Smith  GJ, Thompson  N, Detection and phylogenetic analysis of group 1 coronaviruses in South American bats. Emerg Infect Dis. 2008;14:18903. DOIPubMedGoogle Scholar
  9. Dominguez  SR, O'Shea  TJ, Oko  LM, Holmes  KV. Detection of group 1 coronaviruses in bats in North America. Emerg Infect Dis. 2007;13:1295300.PubMedGoogle Scholar
  10. Gloza-Rausch  F, Ipsen  A, Seebens  A, Gottsche  M, Panning  M, Felix Drexler  J, Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis. 2008;14:62631. DOIPubMedGoogle Scholar
  11. Misra  V, Dumonceaux  T, Dubois  J, Willis  C, Nadin-Davis  S, Severini  A, Detection of polyoma and corona viruses in bats of Canada. J Gen Virol. 2009;90:201522. DOIPubMedGoogle Scholar
  12. Pfefferle  S, Oppong  S, Drexler  JF, Gloza-Rausch  F, Ipsen  A, Seebens  A, Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis. 2009;15:137784. DOIPubMedGoogle Scholar
  13. de Souza Luna  LK, Heiser  V, Regamey  N, Panning  M, Drexler  JF, Mulangu  S, Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription–PCR and nonfluorescent low-density microarray. J Clin Microbiol. 2007;45:104952. DOIPubMedGoogle Scholar
  14. Tamura  K, Dudley  J, Nei  M, Kumar  S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:15969. DOIPubMedGoogle Scholar
  15. Baric  RS, Shieh  CK, Stohlman  SA, Lai  MM. Analysis of intracellular small RNAs of mouse hepatitis virus: evidence for discontinuous transcription. Virology. 1987;156:34254. DOIPubMedGoogle Scholar
  16. Hiscox  JA, Mawditt  KL, Cavanagh  D, Britton  P. Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. J Virol. 1995;69:621927.PubMedGoogle Scholar
  17. Woo  PC, Wang  M, Lau  SK, Xu  H, Poon  RW, Guo  R, Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol. 2007;81:157485. DOIPubMedGoogle Scholar
  18. Simmons  N. Order Chiroptera. In: Wilson DE, Reeder DM, editors. Mammal species of the world: a taxonomic and geographic reference. Baltimore: The Johns Hopkins University Press; 2005. p. 312–529.

Main Article

Page created: March 30, 2011
Page updated: March 30, 2011
Page reviewed: March 30, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external