Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 1—January 2006

Vaccines for Pandemic Influenza

Catherine J. Luke* and Kanta Subbarao*Comments to Author 
Author affiliations: *National Institutes of Health, Bethesda, Maryland, USA

Main Article

Table 3

Details of clinical trials in humans of inactivated and subunit vaccines against avian influenza

Target virus subtype Description of vaccine candidate Adjuvant Findings Reference
H9N2 Inactivated whole virus (A/HK/1073/99). 7.5, 3.8, 1.9 μg/dose with adjuvant or 15 μg without adjuvant. 2 doses, day 0 and day 21 Aluminum hydroxide Two doses needed to achieve HI* antibody titer of >1:40 at any dose. (22)
H9N2 H9N2 whole virus or subunit vaccine. 7.5, 15, or 30 μg per dose. 2 doses, day 0 and day 21. None Two doses needed to achieve HI titer of >1:40 in persons <32 years of age; 1 dose needed to achieve HI titer of ≥1:40 in persons >32 y of age. (23)
H5N1 Low pathogenicity H5N3 strain (A/duck/Singapore/F119-3/97) subunit vaccine with or without adjuvant. 7.5, 15, 30 μg per dose. 2 doses, day 0, day 21 MF59 Geometric mean antibody and seroconversion rates significantly higher when vaccine administered with adjuvant; 2 doses of vaccine needed to achieve antibody responses indicative of protection. (24)
H5N1 Purified baculovirus-expressed recombinant H5 HA derived from A/HK/156/97. 25, 45, 90 μ g per dose, 2 doses or 1 dose of 90 μg followed by 10-μg dose None 23% of volunteers had neutralizing titers of >1:80 after a single dose of 90 μg; 52% of volunteers had neutralizing antibody titers after 2 doses of 90 μg. (27)

*HI, hemagglutination inhibition.

Main Article

  1. Subbarao  K, Katz  J. Avian influenza viruses infecting humans. Cell Mol Life Sci. 2000;57:177084. DOIPubMedGoogle Scholar
  2. Johnson  NP, Mueller  J. Updating the accounts: global mortality of the 1918–1920 "Spanish" influenza pandemic. Bull Hist Med. 2002;76:10515. DOIPubMedGoogle Scholar
  3. World Health Organization. Avian influenza: assessing the pandemic threat. [cited 2005 Sep 29]. Available from
  4. Meltzer  MI, Cox  NJ, Fukuda  K. The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis. 1999;5:65971. DOIPubMedGoogle Scholar
  5. Subbarao  K, Klimov  A, Katz  J, Regnery  H, Lim  W, Hall  H, Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998;279:3936. DOIPubMedGoogle Scholar
  6. Claas  EC, Osterhaus  AD, van Beek  R, De Jong  JC, Rimmelzwaan  GF, Senne  DA, Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998;351:4727. DOIPubMedGoogle Scholar
  7. Peiris  M, Yuen  KY, Leung  CW, Chan  KH, Ip  PL, Lai  RW, Human infection with influenza H9N2. Lancet. 1999;354:9167. DOIPubMedGoogle Scholar
  8. Guo  Y, Li  J, Cheng  X. Discovery of men infected by avian influenza A (H9N2) virus [article in Chinese]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 1999;13:1058.PubMedGoogle Scholar
  9. Butt  KM, Smith  GJD, Chen  H, Zhang  LJ, Leung  YHC, Xu  KM, Human infection with an avian H9N2 influenza A virus in Hong Kong, 2005. J Clin Microbiol. 2005;43:57607. DOIPubMedGoogle Scholar
  10. Peiris  JS, Yu  WC, Leung  CW, Cheung  CY, Ng  WF, Nicholls  JM, Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet. 2004;363:6179. DOIPubMedGoogle Scholar
  11. Fouchier  RA, Schneeberger  PM, Rozendaal  FW, Broekman  JM, Kemink  SA, Munster  V, Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:135661. DOIPubMedGoogle Scholar
  12. Avian influenza virus A (H10N7) circulating among humans in Egypt. EID Weekly Updates. 2004;2:2.
  13. Apisarnthanarak  A, Kitphati  R, Thongphubeth  K, Patoomanunt  P, Anthanont  P, Auwanit  W, Atypical avian influenza (H5N1). Emerg Infect Dis. 2004;10:13214.PubMedGoogle Scholar
  14. de Jong  MD, Bach  VC, Phan  TQ, Vo  MH, Tran  TT, Nguyen  BH, Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med. 2005;352:68691. DOIPubMedGoogle Scholar
  15. Tran  TH, Nguyen  TL, Nguyen  TD, Luong  TS, Pham  PM, Nguyen  VC, Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med. 2004;350:117988. DOIPubMedGoogle Scholar
  16. Shortridge  KF. Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation. Vaccine. 1999;17(Suppl 1):S269. DOIPubMedGoogle Scholar
  17. Guan  Y, Shortridge  KF, Krauss  S, Webster  RG. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A. 1999;96:93637. DOIPubMedGoogle Scholar
  18. Lin  YP, Shaw  M, Gregory  V, Cameron  K, Lim  W, Klimov  A, Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci U S A. 2000;97:96548. DOIPubMedGoogle Scholar
  19. Hoffmann  E, Stech  J, Leneva  I, Krauss  S, Scholtissek  C, Chin  PS, Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J Virol. 2000;74:630915. DOIPubMedGoogle Scholar
  20. Xu  X, Subbarao  K, Cox  NJ, Guo  Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261:159. DOIPubMedGoogle Scholar
  21. Monto  AS. Vaccine and antiviral drugs in pandemic preparedness. Emerg Infect Dis. 2006;12. DOIPubMedGoogle Scholar
  22. Hehme  N, Engelmann  H, Kunzel  W, Neumeier  E, Sanger  R. Pandemic preparedness: lessons learnt from H2N2 and H9N2 candidate vaccines. Med Microbiol Immunol (Berl). 2002;191:2038. DOIPubMedGoogle Scholar
  23. Stephenson  I, Nicholson  KG, Gluck  R, Mischler  R, Newman  RW, Palache  AM, Safety and antigenicity of whole virus and subunit influenza A/Hong Kong/1073/99 (H9N2) vaccine in healthy adults: phase I randomised trial. Lancet. 2003;362:195966. DOIPubMedGoogle Scholar
  24. Nicholson  KG, Colegate  AE, Podda  A, Stephenson  I, Wood  J, Ypma  E, Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet. 2001;357:193743. DOIPubMedGoogle Scholar
  25. Stephenson  I, Nicholson  KG, Colegate  A, Podda  A, Wood  J, Ypma  E, Boosting immunity to influenza H5N1 with MF59-adjuvanted H5N3 A/Duck/Singapore/97 vaccine in a primed human population. Vaccine. 2003;21:168793. DOIPubMedGoogle Scholar
  26. Stephenson  I, Bugarini  R, Nicholson  KG, Podda  A, Wood  JM, Zambon  MC, Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J Infect Dis. 2005;191:12105. DOIPubMedGoogle Scholar
  27. Treanor  JJ, Wilkinson  BE, Masseoud  F, Hu-Primmer  J, Battaglia  R, O’Brien  D, Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine. 2001;19:17327. DOIPubMedGoogle Scholar
  28. Maassab  HF, Bryant  ML. The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev Med Virol. 1999;9:23744. DOIPubMedGoogle Scholar
  29. Murphy  BR. Use of live attenuated cold-adapted influenza reassortant virus vaccines in infants, children, young adults and elderly adults. Infect Dis Clin Pract. 1993;2:17481. DOIGoogle Scholar
  30. Murphy  BR, Coelingh  K. Principles underlying the development and use of live attenuated cold-adapted influenza A and B virus vaccines. Viral Immunol. 2002;15:295323. DOIPubMedGoogle Scholar
  31. Subbarao  K, Katz  JM. Influenza vaccines generated by reverse genetics. Curr Top Microbiol Immunol. 2004;283:31342.PubMedGoogle Scholar
  32. Horimoto  T, Kawaoka  Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol. 1994;68:31208.PubMedGoogle Scholar
  33. Subbarao  K, Chen  H, Swayne  D, Mingay  L, Fodor  E, Brownlee  G, Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology. 2003;305:192200. DOIPubMedGoogle Scholar
  34. Webby  RJ, Perez  DR, Coleman  JS, Guan  Y, Knight  JH, Govorkova  EA, Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet. 2004;363:1099103. DOIPubMedGoogle Scholar
  35. Lipatov  AS, Webby  RJ, Govorkova  EA, Krauss  S, Webster  RG. Efficacy of H5 influenza vaccines produced by reverse genetics in a lethal mouse model. J Infect Dis. 2005;191:121620. DOIPubMedGoogle Scholar
  36. Nicolson  C, Major  D, Wood  JM, Robertson  JS. Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine. 2005;23:294352. DOIPubMedGoogle Scholar
  37. Chen  H, Matsuoka  Y, Swayne  D, Chen  Q, Cox  NJ, Murphy  BR, Generation and characterization of a cold-adapted influenza A H9N2 reassortant as a live pandemic influenza virus vaccine candidate. Vaccine. 2003;21:44306. DOIPubMedGoogle Scholar
  38. Longini  IM Jr, Nizam  A, Xu  S, Ungchusak  K, Hanshaoworakul  W, Cummings  DA, Containing pandemic influenza at the source. Science. 2005;309:10837. DOIPubMedGoogle Scholar

Main Article

Page created: February 16, 2012
Page updated: February 16, 2012
Page reviewed: February 16, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.