Volume 14, Number 6—June 2008
Research
Validation of Syndromic Surveillance for Respiratory Pathogen Activity
Table 1
Data type | Period | % Coverage† | Respiratory syndrome definitions‡ | Analyzed data | International code system | Registry |
---|---|---|---|---|---|---|
Absenteeism | 2002–2003 | 80§ | Reported sick employees; no further medical information | Sick leave reports of employees | – | Statistics Netherlands (CBS), www.cbs.nl |
General practice consultations | 2001–2004 | 1–2 | Symptoms and diagnoses indicating respiratory infectious disease | Symptoms and diagnoses recorded in practice or telephone consultations and in home visits | ICPC | Netherlands Information Network of General Practice (LINH), www.nivel.nl/linh |
Pharmacy dispensations | 2001–2003 | 85 | Prescribed medications indicative for respiratory infectious disease | Prescription medications dispensed in Dutch pharmacies, coded according to the WHO ATC classification | ATC | Foundation for Pharmaceutical Statistics, http://www.sfk.nl |
Hospitalization | 1999–2004 | 99 | General respiratory symptoms/diagnoses; specific respiratory biologic agent diagnoses | Discharge and secondary diagnoses, date of hospitalization | ICD-9-CM | Dutch National Medical Register (LMR) |
Laboratory submissions¶ | 2001–2004 (1999–2000 excluded due to unstable coverage) | 16 | All submissions for microbiologic diagnostic tests on respiratory materials; all submissions for serologic testing on known specific respiratory pathogens; all submissions for Legionella or Streptococcus pneumoniae antigen tests on urine | Laboratory submission requests for diagnostic testing | – | National Infectious Diseases Information System (ISIS) (13) |
Mortality | 1999–2004 | 100 | General respiratory symptoms/diagnoses; specific respiratory biologic agent diagnoses | Date of death, primary cause of death, complicating factors, other additional causes of death | ICD-10 | CBS |
*ICPC, International Classification of Primary Care; WHO, World Health Organization; ATC, Anatomic Therapeutic Chemical Classification System; ICD-9-CM, International Classification of Diseases, 9th revision, Clinical Modification; ICD-10, International Classification of Diseases, 10th revision.
†Percentage of total population, 16.3 million.
‡For detailed syndrome definitions and codes, see Technical Appendix.
§Percentage of working population, 8 million.
¶Diagnostic test requests with both negative and positive results.
References
- Buehler JW, Berkelman RL, Hartley DM, Peters CJ. Syndromic surveillance and bioterrorism-related epidemics. Emerg Infect Dis. 2003;9:1197–204.PubMedGoogle Scholar
- Lazarus R, Kleinman KP, Dashevsky I, DeMaria A, Platt R. Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): the example of lower respiratory infection. BMC Public Health. 2001;1:9. DOIPubMedGoogle Scholar
- Fleming DM, Barley MA, Chapman RS. Surveillance of the bioterrorist threat: a primary care response. Commun Dis Public Health. 2004;7:68–72.PubMedGoogle Scholar
- Miller M, Roche P, Spencer J, Deeble M. Evaluation of Australia’s National Notifiable Disease Surveillance System. Commun Dis Intell. 2004;28:311–23.PubMedGoogle Scholar
- Ohkusa Y, Shigematsu M, Taniguchi K, Okabe N. Experimental surveillance using data on sales of over-the-counter medications—Japan, November 2003–April 2004. MMWR Morb Mortal Wkly Rep. 2005;54(Suppl):47–52.PubMedGoogle Scholar
- Heffernan R, Mostashari F, Das D, Karpati A, Kuldorff M, Weiss D. Syndromic surveillance in public health practice, New York City. Emerg Infect Dis. 2004;10:858–64.PubMedGoogle Scholar
- Mostashari F, Fine A, Das D, Adams J, Layton M. Use of ambulance dispatch data as an early warning system for communitywide influenzalike illness, New York City. J Urban Health. 2003;80:1i–9. DOIPubMedGoogle Scholar
- Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM. Public health assessment of potential biological terrorism agents. Emerg Infect Dis. 2002;8:225–30.PubMedGoogle Scholar
- Lazarus R, Kleinman K, Dashevsky I, Adams C, Kludt P, DeMaria A Jr, Use of automated ambulatory-care encounter records for detection of acute illness clusters, including potential bioterrorism events. Emerg Infect Dis. 2002;8:753–60.PubMedGoogle Scholar
- Buckeridge DL. Outbreak detection through automated surveillance: a review of the determinants of detection. J Biomed Inform. 2007;40:370–9. DOIPubMedGoogle Scholar
- Heijnen ML, Dorigo-Zetsma JW, Bartelds AI, Wilbrink B, Sprenger MJ. Surveillance of respiratory pathogens and influenza-like illnesses in general practices—the Netherlands, winter 1997–98. Euro Surveill. 1999;4:81–4.PubMedGoogle Scholar
- Hertzberger LI, Huisman J, Wilterdink JB. The global eradication of polio by the year 2000 [in Dutch]. Ned Tijdschr Geneeskd. 1998;142:972–3.PubMedGoogle Scholar
- Widdowson MA, Bosman A, van Straten E, Tinga M, Chaves S, van Eerden L, Automated, laboratory-based system using the Internet for disease outbreak detection, the Netherlands. Emerg Infect Dis. 2003;9:1046–52.PubMedGoogle Scholar
- Van den Brandhof WE, Kroes ACM, Bosman A, Peeters MF, Heijnen MLA. Reporting virus diagnostics in the Netherlands: representativeness of the virological weekly reports [in Dutch]. Infectieziekten Bulletin. 2002;13:110–3 [cited 2008 Apr 8]. Available from http://www.rivm.nl/infectieziektenbulletin/bul1304/vir_diagnostiek.html
- Akaike H. A new look at statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23. DOIGoogle Scholar
- Avadhanula V, Rodriguez CA, Devincenzo JP, Wang Y, Webby RJ, Ulett GC, Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species– and cell type–dependent manner. J Virol. 2006;80:1629–36. DOIPubMedGoogle Scholar
- Hament JM, Aerts PC, Fleer A, Van Dijk H, Harmsen T, Kimpen JL, Enhanced adherence of Streptococcus pneumoniae to human epithelial cells infected with respiratory syncytial virus. Pediatr Res. 2004;55:972–8. DOIPubMedGoogle Scholar
- Kim PE, Musher DM, Glezen WP, Rodriguez-Barradas MC, Nahm WK, Wright CE. Association of invasive pneumococcal disease with season, atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis. 1996;22:100–6.PubMedGoogle Scholar
- Hament JM, Kimpen JL, Fleer A, Wolfs TF. Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol. 1999;26:189–95. DOIPubMedGoogle Scholar
- Heisterkamp SH, Dekkers AL, Heijne JC. Automated detection of infectious disease outbreaks: hierarchical time series models. Stat Med. 2006;25:4179–96. DOIPubMedGoogle Scholar
- Dekkers ALM, Heisterkamp SH. NPBats, Bayesian statistical instrument for trend detection and time-series modelling [in Dutch]. National Institute for Public Health and the Environment (RIVM), 2004; internal report 550002006 [cited 2008 Apr 15]. Available from http://www.rivm.nl/bibliotheek/rapporten/550002006.pdf
- Miller B, Kassenborg H, Dunsmuir W, Griffith J, Hadidi M, Nordin JD, Syndromic surveillance for influenzalike illness in ambulatory care network. Emerg Infect Dis. 2004;10:1806–11.PubMedGoogle Scholar
- Brillman JC, Burr T, Forslund D, Joyce E, Picard R, Umland ET. Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance. BMC Med Inform Decis Mak. 2005;5:4. DOIPubMedGoogle Scholar
- Bourgeois FT, Olson KL, Brownstein JS, McAdam AJ, Mandl KD. Validation of syndromic surveillance for respiratory infections. Ann Emerg Med. 2006;47:265.e1.
- Smith G, Hippisley-Cox J, Harcourt S, Heaps M, Painter M, Porter A, Developing a national primary care-based early warning system for health protection—a surveillance tool for the future? Analysis of routinely collected data. J Public Health (Oxf). 2007;29:75–82. DOIPubMedGoogle Scholar
- Vergu E, Grais RF, Sarter H, Fagot JP, Lambert B, Valleron AJ, Medication sales and syndromic surveillance, France. Emerg Infect Dis. 2006;12:416–21.PubMedGoogle Scholar
- Cooper DL, Smith GE, Edmunds WJ, Joseph C, Gerard E, George RC. The contribution of respiratory pathogens to the seasonality of NHS Direct calls. J Infect. 2007;55:240–8. DOIPubMedGoogle Scholar
- Fisman DN. Seasonality of infectious diseases. Annu Rev Public Health. 2007;28:127–43. DOIPubMedGoogle Scholar
- van Rossum CT, Shipley MJ, Hemingway H, Grobbee DE, Mackenbach JP, Marmot MG. Seasonal variation in cause-specific mortality: are there high-risk groups? 25-year follow-up of civil servants from the first Whitehall study. Int J Epidemiol. 2001;30:1109–16. DOIPubMedGoogle Scholar
- Den Boer JW, Yzerman EP, Schellekens J, Lettinga KD, Boshuizen HC, Van Steenbergen JE, A large outbreak of Legionnaires’ disease at a flower show, the Netherlands, 1999. Emerg Infect Dis. 2002;8:37–43.PubMedGoogle Scholar
- Gwaltney JM Jr, Hendley JO, Simon G, Jordan WS Jr. Rhinovirus infections in an industrial population. I. The occurrence of illness. N Engl J Med. 1966;275:1261–8.PubMedGoogle Scholar
- Dales RE, Schweitzer I, Toogood JH, Drouin M, Yang W, Dolovich J, Respiratory infections and the autumn increase in asthma morbidity. Eur Respir J. 1996;9:72–7. DOIPubMedGoogle Scholar
- Gageldonk-Lafeber AB, Heijnen ML, Bartelds AI, Peters MF, van der Plas SM, Wilbrink B. A case-control study of acute respiratory tract infection in general practice patients in the Netherlands. Clin Infect Dis. 2005;41:490–7. DOIPubMedGoogle Scholar
- Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005;102:12891–6. DOIPubMedGoogle Scholar
- Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–76. DOIPubMedGoogle Scholar
- Van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Identification of a new human coronavirus. Nat Med. 2004;10:368–73. DOIPubMedGoogle Scholar
- Cooper DL, Smith GE, Chinemana F, Joseph C, Loveridge P, Sebastionpillai P, Linking syndromic surveillance with virological self-sampling. Epidemiol Infect. 2008;136:222–4. DOIPubMedGoogle Scholar
- Bravata DM, McDonald KM, Smith WM, Rydzak C, Szeto H, Buckeridge DL, Systematic review: surveillance systems for early detection of bioterrorism-related diseases. Ann Intern Med. 2004;140:910–22.PubMedGoogle Scholar
Page created: July 09, 2010
Page updated: July 09, 2010
Page reviewed: July 09, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.